
Ocean modelling for coastal management – Case studies with MOHID

M. Mateus and R. Neves (eds.), IST Press, 2013

COUPLING MOHID WITH OPTIMIZATION ALGORITHMS: PERSPECTIVES
ON THE DEVELOPMENT OF AUTOMATIC CALIBRATION TOOLS

E. B. Lima • P. G. Watts Rodrigues • A. J. Silva Neto • J. Lugon Jr. • M. Irı́zar Mesa • O. Llanes Santiago

CHAPTER SYNOPSIS

Background

The mathematical formulation adopted in MOHID includes parameters that need to be
defined or estimated This chapter presents the coupling of stochastic optimization me-
thods and neural networks with the MOHID platform, in order to solve an inverse problem,
here formulated as the better estimative of bed roughness height and turbulent diffusion
coefficient, parameters that can be present in the mathematical formulation of hydrody-
namic and transport models. The direct problem focused on here was the simulation of
the hydrodynamics and salinity transport in an estuarine environment, the Macaé estu-
ary, Brazil. The results presented here are part of ongoing investigation line, which has
been conducted by researchers of the IPRJ/UERJ since 2008.

Results

All optimization methods tested here showed satisfactory performances, leading to error
estimates lower than measurement errors. Whenever these errors were added to the
experimental data, a longer simulation period was required to estimate the desired pa-
rameters. Regarding the neural network, the results highlighted the necessity to define
a better training strategy.

Conclusions
The coupling of MOHID with optimization algorithms can considerably give agility to cali-
bration procedures. Future researches should focus on water quality simulation, which
are strongly dependent on a quite large number of parameters.

1 INTRODUCTION

The diagnosis of a given water body is based on the concentration analyses of a number

of parameters. The water resources management can also include the simulation of scena-

rios, which could emerge as a consequence of man’s interference in the environment. In this

particular regard, mathematical models are useful tools, reducing time, costs and risks in the

environmental impact evaluation. The mathematical formulation of these models includes a

number of parameters that can assume a range of reasonable values, and a better estimative

is crucial to the simulation accuracy. This estimative can be done through trial and error, what,

besides being highly time consuming, can lead to values that allow to model calibration for a

single and particular scenario only. Further, such strategy can lead to multiple and acceptable

solutions. Alternatively, this calibration can be performed by algorithms, as those based on

inverse problems techniques. These techniques have been used in different science fields.

For water resources modelling purposes, however, not many applications can be found in the

literature.

For example, [1] used a modified Newton method to estimate the nonpoint sources of fecal

coliform, in order to establish allowable load for the Wye River, USA. Other studies have made

use of the Gradient Method, Conjugate Direction Method and Variational Method to estimate

parameters usually present in groundwater modelling [2-3]. On the other hand, instead of

117

E. B. Lima • P. G. Watts Rodrigues • A. J. Silva Neto • J. Lugon Jr. • M. Irı́zar Mesa • O. Llanes Santiago

parameters, the salinity boundary conditions was estimated by [4] for a three-dimensional tidal

hydrodynamic and salinity transport model. In a similar way, [5] proposed a novel algorithm for

the estimation of open boundary conditions in rivers systems where tidal forcing is present.

The solution of an inverse problem can be made through optimization algorithms, which

attempt to minimize (or maximize) the value of a functional through the modification of its

variables. Methods of optimization can be of two types: deterministics, which move with the

setting in the sense of optimal, making use of particularities of the functional; and stochas-

tic type, choosing random configuration with the goal of sweeping, stochastically, the entire

search space, in the search for the optimum. These methods are usually compared regarding

the computational time required to achieve the desired solution. From this point of view, the

stochastic methods show advantages if compared with the deterministic ones. Another im-

portant feature of optimization methods is that they can be applied to any objective function,

regardless the initial value assumed for it, beside the capability of avoid local minimums.

This chapter presents the coupling of optimization methods and neural networks with the

MOHID platform, in order to solve an inverse problem, here formulated as the better estimative

of bed roughness height and turbulent diffusion coefficient, parameters that can be present

in the mathematical formulation of hydrodynamic and transport models. The direct problem

focused on here was the simulation of the hydrodynamics and salinity transport in an estuarine

environment, the Macaé estuary, Brazil.

1.1 MOHID simulator and the Direct Problem

In this work, the MOHID platform was used to simulate the hydrodynamics and salt trans-

ports of Macaé estuary, located at the Brazilian southeast coast (Figure 1). The Macaé basin,

which has a population of around 141,000 people, has been submitted to some severe en-

vironmental impacts, especially in its estuarine zone. This has motivated the authorities to

implement some actions, which includes the computational modelling of estuarine waters.

The modelled domain included an extension of approximately 20 km, from the head to the

outer region of the estuary, at the coast. It was adopted a spatial discretization of 40 m, based

on quadratic cells. The bathymetry data of the coastal region was taken from the nautical chart

1507, edited by the Brazilian Navy in 1974, while the upper region bathymetry was obtained

from [6]. Figure 2 shows the discretized domain and the adopted bathymetry implemented in

MOHID.

Two boundary conditions were prescribed for the hydrodynamic model: (i) in the riverine

boundary it was set a river discharge of 7.8 m3s−1, typical of the dry season for the Macaé

river close to estuarine region [6]; (ii) in the marine boundary it was simulated an astronomic

tide with 17 components. A salinity of 0.037 PSU was set for the riverine boundary, and 36

PSU for the sea boundary. As the initial condition, a salinity of 20 PSU was set for the whole

domain.

1.2 Formulation of the Inverse Problem

In most of the scientific disciplines, and particularly in engineering, there are problems

characterized by differential equations with associated initial and boundary conditions. When

118

E. B. Lima • P. G. Watts Rodrigues • A. J. Silva Neto • J. Lugon Jr. • M. Irı́zar Mesa • O. Llanes Santiago

Studied

region

Figure 1. Estuary location and detail of the simulated region.

these problems are solved in a direct way, the result is generally a functional relationship or

a system of equations, which can be used to calculate values of the dependent variable for

given values of the independent variable. The inverse solution of systems of partial differ-

ential equations constitutes a complex problem, for which there are no universally accepted

methods. Given an applicable direct solution to a system of partial differential equations, it is

possible to propose an inverse problem as a problem of optimization. An algorithm to achieve

such objective is [7]:

• Suppose a solution θ to the inverse problem. This can include the assumption of an

initial or boundary condition, or a typical parameter for a given problem.

• Feed the supposed condition to the direct solution of the partial differential equation

system, calculating in this way values of the dependent variable y. Here the output of

the direct solution is a vector of values corresponding to the times in which the values

of y are measured. This vector of solutions will be denoted as calculated and it will be

represented as y’.

• Compare the calculated values y’ with the observed ones, measured in consistent times.

The success of this approach is the mechanism through which the supposed condition is

improved in the subsequent invocations of the first step. Optimization is the procedure used to

upgrade the estimates for the unknown conditions in order to minimize the objective function,

given by:

SSE(y
′

, θ) =

NT
∑

ti =1

(y (ti) − y
′

(ti , θ))
2

(1)

where θ represents the parameters to be estimated and NT is the total number of experi-

mental data.

119

E. B. Lima • P. G. Watts Rodrigues • A. J. Silva Neto • J. Lugon Jr. • M. Irı́zar Mesa • O. Llanes Santiago

Figure 2. Simulated domain and model bathymetry used.

1.3 Parameter estimation in a model of estuarine hydrodynamics

The hydrodynamic and transport models built in the MOHID can be calibrated, for exam-

ple, by adjusting, respectively, the bed roughness height (R) and the turbulent diffusion coef-

ficient (D). On the other hand, the calibration procedure depends essentially on the field mea-

surements. Regarding this aspect, there are two variables that are more easily obtained, the

water level and salinity. Here a sensitivity analyses was performed to identify which of these

variables would be more sensitive to the parameters of interest. The Macaé estuary bed is

essentially dominated by sand sediments. According to [8], the bed roughness height in this

case, must situate between 0.007 m and 0.05 m. On the other hand, the model configuration

adopted here (time and space discretization) imposed a restriction regarding the turbulent dif-

fusion coefficient, which might set between 0.01 m2s−1 and 5.0 m2s−1, a quite large interval,

anyway. Figure 3a compares the sensitivity coefficient of parameters in relation to the water

level, where a much higher sensitivity in relation to R can be observed. Figure 3b shows the

same results for salinity. Unlike water level, this variable is sensitive to both parameters. These

results show that salinity simulation should be used in the parameters estimation.

1.4 Optimization Methods

The strategies described in Sub-sections 1.4.1 to 1.4.3 were employed to solve the inverse

problem considered here. The Artificial Neural Network, described in 1.4.4 was also used for

the inverse problem formulation and solution.

120

E. B. Lima • P. G. Watts Rodrigues • A. J. Silva Neto • J. Lugon Jr. • M. Irı́zar Mesa • O. Llanes Santiago

00E+00

05E-06

10E-06

15E-06

20E-06

25E-06

30E-06

35E-06

40E-06

45E-06

0 1000 2000 3000

Time (s)

R

D

00E+00

01E-04

02E-04

03E-04

04E-04

05E-04

06E-04

07E-04

08E-04

09E-04

10E-04

0 1000 2000 3000

Time(s)

R

D

(a)

(b)

Figure 3. Sensitivity coefficient of parameters in relation to water level (a) and salinity (b).

1.4.1 Genetic Algorithm (GA)

The Genetic Algorithm (GA) is a method of Evolutionary Computation with several practi-

cal applications. The pseudocode 1 describes the general structure of an Evolutionary Algo-

rithm.

s








Pseudocode 1: GA

0=t ;

 Create an initial population)(tP ;

WHILE no stopping criterion is satisfied DO

Evaluate the fitness of population)(tP ;

Select reproducers from)(tP ;

Generate a new population

1)(tP ;

1= tt ;

END WHILE

The GA method is based in three basic operators, namely selection, crossover or recom-

bination and mutation, detailed below:

Selection: selects chromosomes in the population for reproduction. The fitter a chromo-

some, more likely it is to be selected to reproduce;

121

E. B. Lima • P. G. Watts Rodrigues • A. J. Silva Neto • J. Lugon Jr. • M. Irı́zar Mesa • O. Llanes Santiago

Crossover: randomly chooses a locus in the string, which represents the parameters to

be estimated. A new and different generation can be created from the exchange between two

different strings. The crossover operator roughly mimics biological recombination between two

single organisms chromosomes;

Mutation: randomly flips some of the bits in a chromosome. For example, the string

00000100 might be mutated in its second position to yield 01000100. As pointed out by [9],

mutation can occur at any position in the string, with a given probability, usually very small

(e.g., 0.001).

These algorithms should work in a wide interval range for the parameters values, but with

differences in the efficiency, highlighting the importance of the programmer strategy. In the GA,

the fitness function evaluates the accuracy of the solution candidates. This function together

with execution parameters defines the algorithm completely. Selection, recombination and

mutation processes form a generation in the execution of a GA, and are executed until a

satisfactory solution – defined by a stopping criterion or a specified number of generations - is

reached.

1.4.2 Particle Collision Algorithm (PCA)

The PCA structure resembles the Simulated Annealing structure: first an initial configu-

ration is chosen, then, there is a modification of the old configuration into a new one. The

accuracy of these two configurations is compared [10]. A decision is then made on whether

the new configuration is ‘’acceptable” or not. If that is the case, it serves as the old configura-

tion for the next step. If it is not acceptable, the algorithm proceeds with a new change of the

old configuration. PCA can also be considered a Metropolis algorithm, as a trial solution can

be accepted with a certain probability. This acceptance may avoid the convergence to local

optima. The main steps of the PCA are shown in the pseudocode 2 to 6.

Pseudocode 2: Particle Collision Algorithms

Generate an initial solution Old_Config;

Best_Fit Fit(Old_Config);

FOR 0=n to number of iterations DO

 Perturbation;

 IF Fit(New_Config) < Fit(Old_Config) THEN

 IF Fit(New_Config) <Best_Fit THEN

 Best_Fit Fit(New_Config);

 Best_ConfigNew_Config;

 END IF

 Old_ConfigNew_Config;

 Exploration;

 ELSE

 Scattering;

 END IF

END FOR




122

E. B. Lima • P. G. Watts Rodrigues • A. J. Silva Neto • J. Lugon Jr. • M. Irı́zar Mesa • O. Llanes Santiago

t.)





 Pseudocode 3: Particle Collision Algorithms (Cont.)

 Function Exploration

FOR 0=n untill the number of iterations DO

 Small_Perturbation;

 IF Fit(New_Config) < Fit(Old_Config) THEN

 IF Fit(New_Config) <Best_Fit THEN

 Best_Fit Fit(New_Config);

 Best_ConfigNew_Config;

 END IF

 Old_ConfigNew_Config;

 END IF

END FOR

 Pseudocode 4: Particle Collision Algorithms (Cont.)

 Function Scattering

P
)_(

_
1

ConfigNewFit

FitBest
sca ttering  ;

IF P sca ttering <Random(0:1) THEN

 Old_Config Aleatory solution;

ELSE

 Exploration;

END IF



















 Pseudocode 5: Particle Collision Algorithms (Cont.)

 Function Perturbation

FOR 0=i Untill (dimension of problem 1) DO

 UpperUpper limit [i];

 Lower Lower limit [i];

 RndRandom(0:1);

 New_config[i]  (3.old_config[i]+ (Lower + (Upper-Lower)Rnd))/4;

 IF New_Config[i] >Upper THEN

 New_Config[i] Upper limit [i];

 ELSE

 IF New_Config[i] <Lower THEN

 New_Config[i]  Limite_Inferior[i];

 END IF

 END IF

END FOR

123

E. B. Lima • P. G. Watts Rodrigues • A. J. Silva Neto • J. Lugon Jr. • M. Irı́zar Mesa • O. Llanes Santiago

 Pseudocode 6: Particle Collision Algorithms (Cont.)

 Function Small_Perturbation

FOR 0=i Untill (dimension of problem 1) DO

 Upper  Random(1,0:1,2)*Old_Config[i];

 IF Upper> Upper limit [i] THEN

 Upper Limite_Superior [i];

 END IF

 Lower  Random(0,8:1,0)*Old_Config[i];

 IF Lower<Upper limit [i] THEN

 Lower Lower limit [i];

 END IF

 RndRandom(0:10);

 New_config[i] old_config[i]+((Upper-old_config[i]).Rnd);

 New_config[i] New_config[i] - ((old_config[i]-lower).(1-Rnd));

END FOR












If the new configuration is better than the old one, the ‘’particle” is ‘’absorbed” and there

is an exploration of the neighborhood, searching for an even better solution. Function “Explo-

ration’‘ performs this local search, generating a small stochastic perturbation of the solution

inside a loop (inner loop). In the PCA canonical version it is a one-hundred-iteration loop. (see

“Small Perturbation’‘ in pseudocode 6). Otherwise, the “particle’‘ is “scattered’‘, which means

that the new configuration receives random values within a given acceptable range. The scat-

tering probability (pscattering) is inversely proportional to its quality. A high fitness particle will

have a lower scattering probability.

1.4.3 Luus-Jaakola (LJ)

This method was introduced by [11] and its central idea consists on considering an initial

broad search region for the parameters to be estimated. Random solutions are generated,

whereas the search region becomes smaller as the iterations proceed. Pseudocode 7 des-

cribes the main steps of the method, where nout and nin are the numbers of iterations in the

external and internal loops, respectively, chosen beforehand. Rj is a diagonal matrix of ran-

dom numbers between [-0.5, 0.5] and ǫ is the coefficient of contraction of the search space.

1.5 Artificial Neural Network (ANN)

Artificial Neural Networks mimics biological neural networks, concerning their capability

to learn and generalize. This is done through the basic structures of neural networks, the

neurons. Eq. 2 shows the mathematical representation of a neuron:

out = f

(

n
∑

i=1

widi

)

(2)

Where out is the output signal and di , is the neuron signals inputs, which are multiplied by

weights, wi , representing the synapses, and f is the activation function. The weights definition

124

E. B. Lima • P. G. Watts Rodrigues • A. J. Silva Neto • J. Lugon Jr. • M. Irı́zar Mesa • O. Llanes Santiago

is done by a process called training. In a supervised training, two sets are used, one for

data entry, called pattern, and another to output, called targets. In this case, the patterns are

passed over the network and the weights are adjusted, in a way that the result is the expected

target. The most common type of neural network using this type of training is the perceptron

[12], which consists of a layer of inputs connected by paths, with weights associated with

each neuron, fixed. The training makes use of an iterative tuning, which is repeated until

the convergence to the weights is reached, i.e., until the network returns the expected target,

defined a priori within a given tolerance.

Pseudocode 7: LJ

Algorithm Luus-Jaakola

Choose an initial search space
0

r

Generate an initial solution
*

X

FOR i =1 TO
outn

DO

 FOR j = 1TO
inn

DO

 1

*  ijj rRXX

 IF)(<)(*
XFitXFit j

THEN

 jXX *

 END IF

 END FOR

 1)(1=  ii rr 

END FOR

2 RESULTS

Estimation of the parameters of interest was performed using synthetic data generated

with MOHID, adopting D and R, respectively, as 2.5 m2s−1 and 0.025 m. The objective func-

tion minimization was done by the GA, PCA and LJ methods.

2.1 Genetic Algorithm (GA)

As experimental data, a total of 60 salinity values generated over a period of one hour of

simulation were considered. In the GA, 30 generations were used, with a population of five in-

dividuals and crossover and mutation probability of, respectively, 50% and 4%. The estimated

values for D and R were respectively of 2.4921 m2s−1 and 0.0259 m. In order to evaluate

de results accuracy, the relative error – E(t) – between simulation and “measured’‘ data was

adopted. Figure 4a presents the time evolution of this error. This time profile motivated a 12

hours (real time) simulation, assuming the same values for the parameters. Figure 4b shows

that, even for this larger period of time, the error did not exceed 1%.

125

E. B. Lima • P. G. Watts Rodrigues • A. J. Silva Neto • J. Lugon Jr. • M. Irı́zar Mesa • O. Llanes Santiago

0,00%

0,01%

0,02%

0,03%

0,04%

0,05%

0 1000 2000 3000

E
(t

)

Time (s)

0,00%

0,20%

0,40%

0,60%

0,80%

1,00%

0 10000 20000 30000 40000

E
(t

)

Time (s)

0,00%

0,20%

0,40%

0,60%

0,80%

1,00%

1,20%

1,40%

0 10000 20000 30000 40000

E
(t

)

Time (s)

(a)

(b)

(c)

Figure 4. Salinity relative error from GA estimative for: (a) 1 hour of simulation and considering experi-

mental data acquired in the first hour; (b) 12 hours of simulation, considering experimental data acquired

in the first hour; (c) 12 hours of simulation and considering noisy (4%) experimental data acquired in the

first two hours.

To assess the robustness of the method, a noise of 4% was added to the “experimental’‘

data. Firstly, the estimation was done considering the first hour of “experimental’‘ data, and

poor estimates were obtained, of 1.7976 m2s−1 and 0.0439 m, respectively for D and R. To

improve these estimates, a period of 2 hour was considered, yielding to 2.4921 m2s−1 and

0.0262 m, respectively. Figure 4c shows that, although the relative error trends to be larger

than that observed with noiseless “experimental’‘ data, it did not exceed 1.20%.

2.2 Particle Collision Algorithm (PCA)

The same test case (considered in the previews section) was performed with the PCA,

using 30 and 7 iterations, respectively for the outer and inner (exploration) loops. This roughly

126

E. B. Lima • P. G. Watts Rodrigues • A. J. Silva Neto • J. Lugon Jr. • M. Irı́zar Mesa • O. Llanes Santiago

corresponds to a simulation with the same number of objective function evaluations of those

performed in the GA estimates. Figure 5a shows the time evolution of the relative error, con-

sidering noiseless “experimental’‘ data and one hour for estimation period. The worst, best

and average results obtained with ten runs of the PCA are compared. It can be observed that

even for the worst case, the maximum salinity relative error is of the order of 4.5%. Figure 5b

presents the same comparison, with 4% of noise level and two hours for the estimation period.

Here, much higher values for E(t) can be observed.

2.3 Luus-Jaakola method (LJ)

In order to keep an equivalent number of objective function evaluations, the Luus-Jaakola

method was run adopting internal and external loops of, respectively, 30 and 5, with a con-

traction coefficient of 0.05 for each test. Figure 6a shows the salinity relative error (worst,

best and average) in 12 hours of simulation, considering “experimental’‘ noiseless data, one

hour for estimation period and adopting the estimates after ten runs of LJ. Figure 6b shows

the results for another test, when it was considered “experimental’‘ data with 4% of noise level

acquired along the first two hours. The errors in both cases are less than 2.5%

000%

001%

001%

002%

002%

003%

003%

004%

004%

005%

005%

0 10000 20000 30000 40000 50000

E
(t

)

Time (s)

Average

Best

Worst

000%

005%

010%

015%

020%

025%

030%

035%

0 10000 20000 30000 40000 50000

E
(t

)

Time(s)

Average

Best

Worst

(a)

(b)

Figure 5. Salinity relative error from PCA estimative, considering (a) noiseless experimental data and one

hour for estimation period and (b) noisy (4%) experimental data and two hours for the estimation period.

127

E. B. Lima • P. G. Watts Rodrigues • A. J. Silva Neto • J. Lugon Jr. • M. Irı́zar Mesa • O. Llanes Santiago

000%

001%

001%

002%

002%

0 10000 20000 30000 40000 50000

E
(t

)

Time(s)

Average

Best

Worst

000%

001%

001%

002%

002%

003%

003%

0 10000 20000 30000 40000

E
(t

)

Time(s)

Average

Best

Worst

(a)

(b)

Figure 6. Salinity relative error from LJ (ten runs) estimative in 12 hour of simulation considering (a)

noiseless experimental data and one hour of estimation period and (b) noisy (4%) experimental data and

two hours of estimation period.

2.4 Artificial Neural Network (ANN)

Two ANNs were developed, one with three layers (one hidden), and the other with five

layers (three hidden). For both ANNs, the input layer had 60 neurons, and the output layer

had two neurons. The input data consisted of a 2 hours salinity time series “measured’‘ in a

given station at low tide. Here the expected ANNs output should be estimated values for mean

R and D. Table 1 gives details of test cases.

Table 1. Adopted test cases for the inverse problem solution using ANNs.

Test cases R)(m D)(12 
sm

1 0.007 0.1

2 0.007 5.0

3 0.05 0.1

4 0.05 5.0

5 0.025 2.5

ˆ ˆ

ˆ ˆ

128

E. B. Lima • P. G. Watts Rodrigues • A. J. Silva Neto • J. Lugon Jr. • M. Irı́zar Mesa • O. Llanes Santiago

The ANNs were trained with 600 patterns. Ten discrete values for R and D, respectively

between 0.007 and 0.05 m, and between 0.1 m2s−1 up to 5.0 m2s−1 were considered, gene-

rating the first set of 100 training patterns. The other 500 patterns were generated adding

noise to the original patterns with respectively following levels: 1%, 2%, 3%, 4% and 5%. The

ANNs were trained using 20,000 epochs and the Gradient descent with momentum backpro-

pagation optimization method for weight updating and bias values. In all layers the hyperbolic

tangent sigmoid activation function was used. Tables 2 and 3 show the ratios between es-

timated and exact values for the mean roughness height, R′/R, and the turbulent diffusion

coefficient, D′/D, for the five test cases listed in Table 1, respectively, with and without noise

(4%) addition. For all these tests an ANN with three layers was used. For comparison, the

maximum error between simulation and “observation’‘, after a 12 hour simulation period, is

showed.

The results show poor estimates for the mean R and/or D, with underestimation for both

parameters. A marked improvement was observed with the application of a five layers ANN.

Regardless this improvement, as a whole, the ANN approach method generated poor esti-

mates for the parameters.

Table 2. Three layers without noise.

Test cases R)(m D)(12 
sm

1 0.007 0.1

2 0.007 5.0

3 0.05 0.1

4 0.05 5.0

5 0.025 2.5

ˆ ˆ

ˆ ˆ

Table 3. Three layers with noise of 4%.

Test cases R)(m D)(12 
sm

1 0.007 0.1

2 0.007 5.0

3 0.05 0.1

4 0.05 5.0

5 0.025 2.5

ˆ ˆ

ˆ ˆ

3 CONCLUSIONS

The present work dealt with a complex problem of estimating parameters in an estuarine

simulation. The sensitivity analysis demonstrated the convenience of using the salinity as the

observable variable. The inverse problem was then solved with three stochastic optimiza-

tion methods, the Genetic Algorithm, the Particle Collision Algorithm and the Luus-Jaakola

Method, coupled to hydrodynamic and transport models solved by MOHID. Artificial Neural

129

E. B. Lima • P. G. Watts Rodrigues • A. J. Silva Neto • J. Lugon Jr. • M. Irı́zar Mesa • O. Llanes Santiago

Networks were also used for the solution of the inverse problem. The optimization methods

were implemented in a way to guarantee for all of them the same number of evaluations of

the objective function, which is critical to define the computation time. With this regard, both

GA and LJ had 150 evaluations to the objective function, whereas for the PCA this quantity

was controlled by the probability associated with the exploration function calls, resulting in 163

evaluations in this present study.

Generally speaking, the optimization methods showed quite similar performances, with LJ

presenting the best results with the lowest computational complexity. Although the GA method

showed high efficiency as well, if compared to the other methods, it was disadvantageous due

its binary approach, which imposes a limit to the search range (128 discrete values for each

parameter in this study). It was also observed that, for all methods, noisy “measurements” re-

quired longer periods for estimation. The MOHID coupling with optimization algorithms seems

to be a quite promising research area that can aid in the development of automatic calibration

procedures.

REFERENCES

1. Shen, J., Jiab, J., Sissona and G. M., 2006. Inverse estimation of nonpoint sources of fecal coliform
for establishing allowable load for Wye River, Maryland, Water Research (40): 3333-3342.

2. Sun, N.Z., 1994. Inverse Problems in Groundwater Modeling, Kluwer Academic Publishers, Dor-
drecht, The Netherlands.

3. Yeh, W.W.G., 1986. Review of parameter identification procedures in ground hydrology: The in-
verse problem, Water Resour. Res. (22): 95-108.

4. Yang, Z. and Hamrick, J. M., 2004. Optimal control of salinity boundary condition in a tidal model
using a variational inverse method, Estuarine, Coastal and Shelf Science (62): 13-24.

5. Strub, I. S., Percelay, J., Stacey, M. T. and Bayen, A. M., 2009. Inverse estimation of open boundary
conditions in tidal channels, Ocean Modelling (29): 85-93.

6. Amaral, K., 2003. Macaé River Estuary Computational Modeling as a Tool for the Integrated Man-
agement of Water Resources., COPPE/UFRJ /Rio de Janeiro. In Portuguese.

7. Karr, C.L., Yakushin, I. and Nicolosi, K., 2000. Solving inverse initial-value, boundary-value prob-
lems via genetic algorithm, Engineering Applications of Artificial Intelligence (13): 625-633.

8. Abbot, M. B. and Basco, D. R., 1989 Computational Fluid Dynamics, an Introduction for Engineers.,
Logan Group, UK Limited.

9. Melanie, M., 1999. An Introduction to Genetic Algorithms, A Bradford Book The MIT Press Cam-
bridge, Fifth edition.

10. Sacco, W. F., Oliveira, C. R. E. and Pereira, C. M. N. A., 2006. Two stochastic optimization algo-
rithms applied to nuclear reactor core design, Progress in Nuclear Energy (48): 525-539.

11. Luus, R. and Jaakola, T. H. I., 1973. Optimization by Direct Search and Systematic Reduction of
the Size of Search Region, AIChE Journal (19): 760-766.

12. Fausett, L., 1994. Fundamentals of Neural Networks, Prentice-Hall, Englewood Cliffs, NJ.

130

