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Abstract
The shallow water equations are introduced and discretized in a standard C-grid with a leapfrog, face-
centred numerical scheme combined with simple Asselin-Roberts filtering. Dirichelet, radiative and closed
conditions were implemented at the boundaries. Simple testing were performed with a gaussian level ele-
vation and with wind forcing. The geostrophic equilibrium of a gaussian level elevation is presented and
an analytical solution of the steady-state is obtained. Results show that Dirichelet and closed bound-
ary conditions reflect all surface waves back inside the domain and multiple linear superpositions occur,
eventually leading to instability. A study on the scalar of Okubo-Weiss is suggested as a diagnostic tool
to evaluate hyperbolicity/parabolicity of convectively-dominated flows near open-boundaries.
Keywords: Shallow-Water equations, Okubo-Weiss, Open Boundary Conditions, Geostrophic Equilib-
rium.

1. Introduction
A 1981 pre-print of a study by Weiss[13] showed that in the regions where the flow was dominantly
hyperbolic, the gradients of vorticity would grow exponentially, while in the regions where the flow was
dominantly elliptic, the gradients of vorticity would present a periodic behavior. He related this by
comparing the squared rate of strain with the squared rate of rotation of the fluid. These quantities can
be related to the basic motions of continuous deformation of a continuum medium:

∂v
∂x − ∂u

∂y , spin
∂u
∂x − ∂v

∂y , stretch
∂v
∂x + ∂u

∂y , shear
∂u
∂x + ∂v

∂y , growth

. (1)

These diagnostic quantities, that characterize the advecting field, can be of extreme usefulness to identify
the type of motion that a material particle may undergo.

The identity Weiss derives, also presented by Arakawa[1] fifteen years earlier, is equivalent to

shear2 + stretch2 − spin2

2
= 2
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− ∂u

∂x
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The rate of rotation is identified with vorticity, and its square is identified with enstrophy. Basically, in
the regions of the flow where the rate of strain (shear and stress) is dominant, the vorticity is sheared by
the hyperbolic flow, while in the regions of the flow where the rate of vorticity is dominant, the vorticity
is smoothly advected. Thus the hyperbolic flow is responsible for the growth of the gradients of vorticity.
Furthermore, Weiss[13] demonstrated, based on a work by Bourguignon and Brezis[4], that the nature of
the flow (elliptic or hyperbolic) is largely influenced by the domain boundary, probably as a consequence
that the boundary topology reflects on the Gaussian curvature of the flow’s stream function, which Weiss
shows to be none other than the rate of strain squared minus the rate of rotation squared (i.e. vorticity
squared i.e. enstrophy).

In particular, Weiss demonstrated that for smooth convex boundaries (i.e. the tangent plane to the
boundary of the domainD, ∂D, is interior toD at all points on ∂D), the flow is predominantly hyperbolic,
while for concave boundaries (i.e. the tangent plane to ∂D is exterior to D i.e. closed domains, bathtubs,
pools, etc) the flow is predominantly elliptic in nature, as most classical boundary valued problems are.

These relationships that indicate the influence of the geometry on the flow, and vice-versa, are re-
current and very powerful. In this work, the scalar of Okubo-Weiss (OW) is proposed as a diagnostic
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quantity to study convectively dominated problems near open-boundaries. Indeed, boundary-valued
numerical problems are solved numerically near open boundaries by choosing one type of boundary con-
dition. It is expected that the OW scalar will help to better quantify the influence of open boundary
conditions on the type of flow near the boundaries and provide a solid guideline for numerical modelers
to choose the best available boundary condition.

This short work will firstly present a shallow-waters numerical model implemented in Matlab. The
model is then validated by considering a simple test-case of the release of a gaussian bump and by
comparing numerical results with analytical estimates. Finally, a numerical experiment is devised that
exploits the OW scalar to study the influence of passive radiative boundary conditions on the flow near
open-bounded regions against an ideal non-bounded flow.

2. Developping a shallow-waters model
The shallow waters equations (SWE) describe the 2D barotropic motion of water masses. The SWE are
widely described throughout the literature; for example, they are given in [8] as
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where H is the depth from the surface level to the bottom, u and v are the zonal and meridional
components of velocity, x, y and z are the zonal, meridional and depth positions respectively. f =
1.01 × 10−4 rad/s is the Coriolis frequency at 42o of latitude, ν is the horizontal turbulent viscosity,
g = 9.8 m2/s is the gravity acceleration, ρ0 = 1033 kg/m3 is the water mean density and eta is the water
level relative to rest. τ bu is the bottom stress zonal component, τwu is the wind stress zonal component.
The bottomstress [12] is given by

τ bu = ρ0CDub

√
u2
b + v2b

where CD is the bottom drag coefficient and ub and vb are the zonal and meridional velocity bottom
velocity components. The bottom drag coefficient [11] is given by

CD =

(
k/ ln

(
zD + z0

z0

))2

where zD is the distance to the bottom , z0 = 0.002 m is a typical roughness length [11] and the Von
Karman constant [11] is set to k = 0.4. The wind stress [12] is given by

τwu = ρaCau10

√
u2
10 + v210

where ρa = 1.25 kg/m3 is the air density, Ca is an air drag coefficient whose values can be found in [12]
and u10 and v10 is the air speed at 10m height.

2.1. The mesh
The mesh in use is an Arakawa Staggered regular C-grid[1] which consists in staggering three types of
regular grids. Each type of grid consists in a regular arrangements of T-cells, U-cells and V-cells. In the
T-cell, η and H are evaluated at the centres, and u and v are evaluated at the eastern, western faces and
southern, northern faces, respectively. In the U-cell, u is evaluated at the centre, η and H are evaluated at
the eastern, western faces, and v is evaluated at the corners. In the V-cell, v is evaluated at the centre, η
and H are evaluated at the southern, northern faces, and u is evaluated at the corners. For simplicity, the
mesh will have constant step-sizes ∆x and ∆y. The indices i and j correspond to the i-th zonal cell and
the j-th meridional cell counted in the South-North direction and in the West-East direction, respectively.

2.2. The numerical scheme
The spatial finite difference numerical scheme implemented in Matlab for this numerical experiment is
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centered in time and centered in time (CTCS), as seen in [8]:
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≡ Ru.

mT , mU and mV are land-mask and flux-mask matrices to be described in the next section. For the
meridional spatial momentum scheme in the V-Cells, clever symmetry one-to-one relations with zonal
momentum scheme in the U-cells are used:

• switch ∆x and ∆y: ∆x ↔ ∆y,

• switch i and j: i ↔ j,

• switch u and v: u ↔ v,

• switch signal of the Coriolis term: (+ ↔ −).

• switch M and N : M ↔ N ,

The finite-difference first-order numerical scheme for the waterlevel (T-Cell) writes out:

∂η

∂t
= − (mT i+1 (H +Hi+1) /2 ui+1 −mT i−1 (Hi−1 +H) /2 u) /∆x

−mT j+1 ((H +Hj+1) /2 vj+1 −mT j−1 (Hj−1 +H) /2 v) /∆y

≡ Rη

The time scheme used is the Leapfrog as described in [8]:

ηl+1 = ηl−1 + 2∆t {Rη} ,
H l+1 = ηl+1 + d,

ul+1 =
(
ul−1

(
H l−1 +H l−1

i−1

)
+ 4∆t {Ru}

)
/
(
H l+1 +H l+1

i−1

)
,

vl+1 =
(
vl−1

(
H l−1 +H l−1

j−1

)
+ 4∆t {Rv}

)
/
(
H l+1 +H l+1

j−1

)
.
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Notice how the leapfrog time scheme obliges two initial conditions at t0 and at t1. Hence, in order to
avoid mode decoupling, a Robert-Asselin filter [2] for u, v, η at each integration time-step is used, as
suggested by [8]:

P l = P l + γ
(
P l−1 − 2P l + P l+1

)
,

where γ is a parameter set to 0.1 [8]. The Robert-Asselin provides a good coupling between the two
initial conditions, at the expense of some loss in precision [2].

2.3. Boundary conditions
As the SWE differential equations are a boundary-value problem, two main class of boundary condi-
tions were implemented in our numerical solver: null-valued (Dirichelet) and null-flux active boundary
conditions, as well as radiative passive boundary conditions. The null-value boundary conditions were
implemented by considering that the T-cells have M ×N nodes then the U-cells have M × (N +1) nodes
and the V-cells have (M + 1) × N nodes. η is calculated within {2, ..., (M − 1)} × {2, ..., (N − 1)}
and u and v are calculated within {2, ..., (M − 1)} × {2, ..., N} and {2, ..., M} × {2, ..., (N − 1)}. For
the null-fluxes, a land mask, mT , for the T-cells mesh is introduced. The goal is to impose a null-flux
boundary condition surrounding any land cell, i.e.

v⃗ · n⃗ = 0,

where v⃗ is the velocity vector and n⃗ is the land/water interface outward normal vector. It returns 1 if
the cell is filled with water and 0 if the cell is land. This implies the definition of appropriate null-fluxes
masks, mU and mV , for the U and V-cells. Thus, for every i, j such that mT = 0, it is required that
mU = 0, mU i+1 = 0, mV = 0 and mV j+1 = 0. Everywhere else the value of the masks is 1. The T,
U and V masks are to be applied in the numerical scheme to the T-cell properties, the U-cell properties
and the V-cell properties, respectively. The radiative scheme is a Flather radiation type [5] implemented
follows a NVOE stencil on a C-grid [7]. The western boundary radiative condition is defined, for the
elevation and the component of velocity perpendicular to the boundary, by

ηl+1
1, j = η1, j − 2

∆t

∆x

√
g H1, j (η1, j − η2, j) ,

ul+1
1, j = −

√
g

H l+1
1, j

ηl+1
1, j ,

for j = 1, ..., N , and is defined by, for the velocity component tangent to the boundary,

vl+1
1, j =

(
v1, j (H1, j +H1, j−1)

−2 ∆t
∆x

√
g

H1, j+H1, j−1

2 (v1, j − v2, j)

)
/
(
H l+1

1, j +H l+1
1, j−1

)
,

for j = 2, ..., N .
For the eastern boundary, the radiation boundary condition writes,

ηl+1
M, j = ηM, j − 2

∆t

∆x

√
g HM, j (ηM, j − ηM−1, j) ,

ul+1
M+1, j = −

√
g

H l+1
M, j

ηl+1
M, j ,

for j = 1, ..., N , and is defined by, for the velocity component tangent to the boundary,

vl+1
M, j =

(
vM, j (HM, j +HM, j−1)

−2 ∆t
∆x

√
g

HM, j+HM, j−1

2 (vM, j − vM−1, j)

)
/
(
H l+1

M, j +H l+1
M, j−1

)
,

for j = 2, ..., N . Note that the [5] radiation condition applied to the normal component of velocity to
the boundary can be replaced with a simple null-gradient and yield similar results,

ul+1
1, j = ul+1

2, j ,
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for i = 1, and
ul+1
m+1, j = ul+1

m, j ,

for i = m+ 1.
Once more, to derive an adequate scheme for the southern and northern boundary conditions, simply
follow the symmetrical rules below and apply them to the preceding equations

• switch i and j: i ↔ j,

• switch u and v: u ↔ v,

• switch M and N : M ↔ N ,

• switch ∆x and ∆y: ∆x ↔ ∆y,

• switch (West, East) with (South, North).

3. Validation
The interest of a gaussian level initial condition is that one can test adjustment under gravity of a
non-rotating fluid under the hydrostatic approximation, much like the exercise on Gill[6, p. 110]. The
hydrostatic approximation simply neglects the vertical velocity and acceleration of the particles to calcu-
late the local pressure. Later on, the Coriolis acceleration can be added, and the flow adjustment under
gravity of a rotating fluid can take place, again, much like the exercise on Gill[6, p. 199]. Some basic
simulations are set to test the conservation of volume, momentum and vorticity. Even though energy
should be conserved when considering the Euler equations, in practice, the numerical viscosity in the
model ensures the maintenance of a good rate of dissipation of energy. The interesting thing to test then,
is to estimate the rate of energy dissipation. The gaussian initial elevation is given by

ησx σy (x, y) = h0 e
−
(

(x−x0)2

σ2
x

+
(y−y0)2

σ2
y

)
, (4)

which yields
V = π σx σy h0, (5)

where σx, σy is the gaussian bell width along the x-axis and the y-axis, x0, y0 are the coordinates of
the gaussian bell centre, h0 is the gaussian bell height at it centre and V is its total volume that must
be preserved in time (in a closed bathtub-like domain). The integrated available potential energy at the
initial instant (APE0), which is equal to the initial total energy (TE0) for an infinite unbounded domain,
is calculated to be exactly

APE0, h0, σx, σy =
ρ g

4
π σx σy h

2
0. (6)

Thus, for a bounded domain sufficiently large relatively to σx, Eq (6) gives a good estimative of the TE0,
which must be preserved at all times if the domain is closed. The celerity of gravity waves, c, is given, in
the shallow water approximation, by [9]

c =
√

g H. (7)

The characteristic speed of the flow, U , in the gaussian bump initialization, is zero everywhere, ex-
cept at the wake of the wave front, where the characteristic velocity can be estimated, by geometrical
considerations, to be at initial instant

U0 ∼ h0

2

√
g

H
, (8)

which would make the Froude number at the wake of the wave to become,

Fr ∼ h0

2H
. (9)

Eq. (8) indicates that the flow velocity in the wake of the wave grows with the initial elevation, which
is rather intuitive, but also indicates that the flow velocity reduces as the depth grows, which is rather
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counter-intuitive. Hence, the faster the gravity wave celerity, the slower the flow velocity in its wake and
the smaller the Froude number. The integrated total energy dissipation rate is given by

TE, t = −
∫
V

ρ ϵ dV, (10)

where ϵ is the dissipation rate [6]. Considering that the viscous dissipation is a simple turbulence model,
then one can infer that the integrated turbulent kinetic energy (TKE) production rate is given by the
kinetic energy viscous dissipation rate but with an opposite sign. Furthermore, a plausible estimative of
the dissipation rate ϵσ(x, y, t0) for a gaussian bump initial elevation, shortly the initial instant is

ϵσ(x, y, t0) =

{
ν
(
U0

σ

)2
, if x2 + y2 < σ

0, if not.
(11)

Integrating Eq. (10) near instant t0 and using Eq. (11) yields,

TE, t

TE0
≡ − 1

Tσ
= − ν

σ2
, (12)

where Tσ = σ2

ν is postulated to be a characteristic time of dissipation of the mechanical energy of
the system, which yields the order of magnitude of the time taken for the gaussian bump to dissipate
a substancial amount of its initial energy, after being released. It is interesting to notice that it is
independent of the gravitic acceleration. Table 1 displays the configuration of the validation experiment,
labeled ”Validation”. Figure 1 displays the time evolution of TE

TE0
(t⋆) for ν = 5000 m2 s−1 in adimensional

units of Tσ for several values of σ. The multiple plots show a perfect overlap, indicating that Eq. (12) is
plausible. Furthermore, the adimensional time unit of Tσ, given in Eq (12), corresponds roughly to the
energy half-life of the system, which is exactly what a characteristic energy dissipation time is expected
to yield. The right panel of figure 1 shows a plot of the TE half-life of the system for different viscosities.
The plot shows three regions, the low viscosity region for 0 < ν < 2× 102 m2 s−1, the transition region
for 2 × 102 < ν < 2 × 103 m2 s−1, and the high viscosity region for 2 × 103 < ν < 105 m2 s−1. For
viscosities higher than 105 m2 s−1 the system, described in table 1, reaches the limits of its numerical
stability. In the low viscosity region there is no dependence of the TE half-life with viscosity, showing
a half-life of 3 × 105 s. The low viscosity region is dominated by spurious numerical energy dissipation.
Considering the advecting numerical scheme, the numerical energy dissipation is limited as long that the
numerical Reynolds number (or numerical Péclet number) as seen in Eq. (13), remains very small.

U ∆x

2 ν
≪ 1. (13)

Furthermore, in the present test-case, the conservation of volume, vorticity and momentum are preserved
(not shown) and the perfectly centred initial gaussian water elevation shows a perfect radial symmetry
along both X and Y axis (not shown). The conservation of energy is not verified (not shown) due to the
artificial numerical viscosity inherent in this type of finite-diferencing technique, seen in Eq. (11). How-
ever both the sum of the total energy and the turbulente kinetic energy yield an approximate constant
value (not shown).
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Table 1: Configurations of the model for a non-rotating and a rotating fluid with a gaussian initial
elevation. Three configurations are shown labeled ”Validation”, ”Geostrophy” and ”Okubo-Weiss”.

Parameter Validation Geostrophy Okubo-Weiss
H 10 m
h0 1 cm
σx 6× 104 m
ν 0 m2 s−1 5× 103 m2 s−1

M ×N small model 37× 37
M ×N large model - - 73× 73

Duration 1.8× 105 s 8× 104 s
dx 2× 104 m
dt 500 s

TE0 2.86× 109 J
U0 ∼ 5× 10−3 m s−1

c ∼ 10 m s−1

Fr ∼ 5× 10−4

Coriolis force - yes -
Boundary Closed GWE+FLA GWE

Volume 1.13× 108 m3
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Figure 1: Left panel: evolution of TE
TE0

with t⋆ for several values of σ and for a value of ν = 5000 m2 s−1.
The several time-series with the same ν show a perfect overlap. t⋆ = 1 is equal to Tσ, the characteristic
time of dissipation proposed in Eq. (12). Right panel: Dependence of the total energy half-life with
viscosity. The viscosity axis is logarithmic. The initial energy of the gaussian bump was 2.86 × 109 J.
Three regions are separated by the vertical dashed lines: the low viscosity region for 0 < ν < 2 × 102

m2 s−1, the transition region for 2 × 102 < ν < 2 × 103 m2 s−1 and the high viscosity region for
2× 103 < ν < 105 m2 s−1.
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4. Geostrophic equilibrium
The following numerical experiments aim at validating and assessing the performance of the simple
gravity wave explicit (GWE) radiation condition for the water elevation and for the tangential velocity,
and the [5] (FLA) radiation condition for the normal velocity. Table 1 contains the configuration of
the ”Geostrophy” numerical experiment. The sequence of panels in figure 2 illustrate the geostrophic
adjustement of the gaussian bump after release in three stages: a) before the gravity wave front arrives
at the boundary, b) during the boundary crossing of the gravity wave and c), after the gravity wave front
passed and a geostrophic balance remains. Contrarily to the non-rotating case, after the gravity wave
is radiated out of the domain, a significant amount of energy is retained within the geostrophic balance
(not shown), about a third of the initial TE, half of which is composed by potential energy coming from
the elevation solution at rest and another half which is composed by the geostrophic flow velocity field.

Figure 2: Adjustement of a gaussian elevation in a rotating domain. Left panels display the gravity wave
elevation and right panels display the flow velocity field. a) The top panels show the transient state of the
system shortly after the initial gaussian elevation was released and before the gravity wave front arrive
at the boundaries. b) The middle panels show the gravity wave front crossing the boundaries and the
instauration of the central eddy evolving towards geostrophic equilibrium. c) The bottom panels show
the geostrophic equilibrium, well after the gravity wave front was radiated at the boundaries.
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Geostrophic equilibrium is attained when{
f vg = g

∂ηg

∂x

f ug = −g
∂ηg

∂y

, (14)

where ug and vg are the geostrophic components of velocity. Furthermore, it can be demonstrated
easily that the geostrophic water elevation, ηg, is the solution of the differential Eq. (15),

∂2ηg
∂x2

+
∂2ηg
∂y2

=
f2

c2
(ηg − η0) , (15)

where η0 is the initial water elevation and where the fluid starts from an irrotational state (in the present
case, the initial state is the gaussian elevation). Linear differential Eq. (15) is very interesting as it yields
a quite simple analytical solution (not shown) that matches well with the numerical solution (not shown).

5. Appying the Okubo-Weiss scalar to assess the open-boundary condition
Besides being an effective tool at identifying eddies, the Okubo-Weiss scalar is fundamentally an objective
tool capable of identifying hyperbolic regions of the flow, (dominated by the strain rate tensor, yielding
positive values), from elliptic regions of the flow (dominated by vorticity, yielding negative values). The
theory goes that solid boundaries (regions of null-flux) influence locally towards an elliptic flow [13]. The
idea is to check wether the gravity wave radiative boundary condition influence what otherwise should
have been a perfectly hyperbolic flow (i.e. OW < 0). A numerical experiment was setup with two models
releasing exactly the same gaussian elevation at their centre. One of the models has the boundaries farther
away, thus doubling its grid-cells per dimensional axis. The duration of 80000 s was chosen so that the
gravity wave front passed through the smaller domain boundaries but barely reached the larger domain
boundaries. The idea is to compare the Okubo-Weiss parameter in the common region of both domains
at the same instant of 80000 s. Differences in the nature of the flow should be attributed to the existence
of a boundary. Different implementations of boundary conditions should yield differences as well. The
goal is to find the best open boundary radiative scheme which yields the most similar OW map with the
one from the large domain near the boundaries. The contour plot in figure 3, on the left panel, displays
a radial and all positive Okubo-Weiss scalar field with an order of magnitude of about ∼ 10−21 for the
large domain. It means that the flow is purely hyperbolic and has little intensity when compared to the
velocity in the wake of the wave front. On the right panel, the OW contour plot in the smaller domain
shows an elliptic boundary layer, due to the partial reflection of the gravity wave. The hyperbolic flow on
the domain interior reaches ∼ 10−19, i.e. two orders of magnitude above the flow on the interior of the
large domain. This means that the hyperbolic flow of the gravity waves was partially reflected back into
the interior of the domain. Objectively, a better radiative boundary condition would minimize or even
remove the elliptic boundary layer present in the small domain shown by the Okubo-Weiss parameter.

6. Conclusions
Here lies the shallow-water equations numerical model as described in [8] with the same numerical scheme.
It currently only has the Dirichelet boundary conditions and the gravity wave explicit radiation scheme
added of a null-gradient or Flather for the normal velocity. This means that, in the former case, all
surface waves bounce back at the boundary and and give rise to a cascade of multiple linear superposi-
tions leading to a path of unavoidable numerical instability. In the latter case, the solution radiates any
level perturbation (gravitic waves) at the open boundaries [7]. It is important to note that the geometric
considerations of the gaussian bump elevation at the instant of release were crucial in order to estimate
matching predictions of energy partitioning and production of TKE. In particular, it was found that the
relative production rate of TKE varies with viscosity and σ alone, and is independent of the Froude num-
ber associated with the gaussian gravity wave. It was also found (Eq. (12)) a characteristic time scale for
the energy decay of a two-dimensional wave front. The Okubo-Weiss parameter allowed to quantify the
influence of the open boundary condition on the structure of the flow near the boundaries. The numerical
evidence shows that boundary conditions tend change local flow from an hyperbolic strucure to an elliptic
structure. Further work involves implementing relaxing conditions at the boundaries, variable coriolis
force, cyclic boundary conditions. Ultimately, using a sponge layer near the boundaries is considered [10],
as well as developing the recent works of [3] with incoming characteristics. A classification of these several
boundary conditions using the OW scalar as a quantifier would probably be interesting and useful.
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Figure 3: Contour plots of the Okubo-Weiss scalar for the same region. On the left panel, the large
domains result. On the right panel, the small domain results. Positive OW contours are dashed and
represent hyperbolic flow. Negative OW contours are solid and represent elliptic flow. The null-OW
contour is the thick solid line and marks the transition from hyperbolic to elliptic flow.
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