
MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Starting MOHID Lagrangian

Ricardo Birjukovs Canelas

MARETEC, Instituto Superior Técnico, Lisbon, Portugal



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Immediate concern: CleanAtlantic



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Immediate concern: CleanAtlantic

• Develop modelling
methodologies and
capabilities to tackle a domain
such as the Atlantic ocean;

• Model several types of litter
and their evolution in time
(degradation, biofouling,
aging, etc);

• Identify accumulation zones,
account for main sources and
predict trends.



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Not so immediate concerns: MOHID
development

• The Lagrangian Modules are very
large (+40 KLOCs each);

• They have aged ungracefully:
• considerable computational and

coding overhead has been introduced
by continuous add-ons;

• memory usage is not optimized
• not internally modular (like most of

MOHID)
• As a standalone module, they are slow

• The Lagrangian Modules are very
comprehensive;

• Do many things:
• Plumes and jets;
• Water quality;
• Sediments;
• Oil;
• etc

• Integrated in the MOHID system



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Functional Specifications

In order to be useful in the context of Maretec and the MOHID users, the new
Lagrangian code should comply with:

• Uni-directional coupling to a hydrodynamic solution;
• Be medium-independent, i.e., should work across Water, Land and atmosphere;
• Present a large collection of tracer types and their respective methods;
• Be efficient (O(107) tracers), fast (KISS and parallel), extendible (highly

modular) and readable (it will never be finished, new coders should be kept in
mind)



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

First looks

Our Lagrangian code should expose to the ’user’ the following control structure



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Defining a Source

Sources are complex objects:

• Geometry and location
• Lifespan
• Trajectory
• Properties to imprint on the Tracers
• Emitting rate of Tracers



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Defining a useful Tracer

Our ’main’ entity is probably opaque to the user. A Pure Lagrangian Tracer should
consist of:

Parameters
• Id
• Id of the Source
• Maximum velocity
• ...

Statistics
• Average position
• Average velocity
• Average depth
• ...

State
• Active
• Age
• Position
• Velocity
• Acceleration
• Depth
• ...



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Another Tracer!

A Pure Lagrangian Tracer is useful as a template for other types of Tracers. We
can just make our ’plastic’ tracer by adding some other properties to it:

Plastic parameters
• Density
• Degradation rate
• Size
• Particulate
• ...

Plastic statistics
• ...

Plastic state
• Radius
• Condition
• Concentration
• ...

And then paper, tires, algae, radioactive isotopes, (...)



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Once a simulation is launched
This part is mostly hidden from a ’user’



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Organizing a Tracer library

A tracer type-properties library can be built over time, keeping information nice and
clean:

<property name="bag_1">
<particulate value="false" />
<density value="0.7" />
<radius value="0.2" />
<condition value="0.95" />
<degradation_rate value="1" />

</property>

A shared .xml file can be used as a library, were new entries can be added as need
arises.



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Ensuring scalability



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Ensuring scalability - I

Employ domain decomposition even in a serial run

• Background hydrodynamic solution can be read in sub-domain blocks
• Different procedures can be done per block
• Allows higher-order optimizations on memory access patterns



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Ensuring scalability - II

Finding your place in the domain takes time/memory in an arbitrary mesh:

Using memory (scales badly)
• use Ceiling()/dx and Floor()/dx on coordinates to find my grid cell
• need to store every dx in a variable resolution mesh
• what if someone gives us an unstructured mesh?

Using processor (scales at large)
• use a space filling curve and map to that
• very elegant way to decouple the problem from the mesh

Z-Order to the rescue!



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Ensuring scalability - II

Finding your place in the domain takes time/memory in an arbitrary mesh:

Using memory (scales badly)
• use Ceiling()/dx and Floor()/dx on coordinates to find my grid cell
• need to store every dx in a variable resolution mesh
• what if someone gives us an unstructured mesh?

Using processor (scales at large)
• use a space filling curve and map to that
• very elegant way to decouple the problem from the mesh

Z-Order to the rescue!



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

So what makes our problem ’hard’?

Sources and Tracers seem bo be simple enough, as entities. Integrating a tracer in
time is essentially variations on the theme

Dx i

Dt
=< u > (x i , t)

or

DV i

Dt
= f (< u > (x i , t))

Most processes rely on estimating an ambient quantity: velocity, temperature, salinity,
colour...

If there are many Tracers, their operations can be cheap comparing to interpolating the
ambient quantities.



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

So what makes our problem ’hard’?

Sources and Tracers seem bo be simple enough, as entities. Integrating a tracer in
time is essentially variations on the theme

Dx i

Dt
=< u > (x i , t)

or

DV i

Dt
= f (< u > (x i , t))

Most processes rely on estimating an ambient quantity: velocity, temperature, salinity,
colour...

If there are many Tracers, their operations can be cheap comparing to interpolating the
ambient quantities.



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Interpolation - I

Assuming decent memory management, interpolation is our ’hard’ problem in offline
mode:

• file reading for every step
• find tracer positions on the mesh
• access mesh variables per interesting cell, per tracer
• implicit and/or higher-order schemes require several ambient time-steps...

Simple for a few Tracers, doesn’t scale for large numbers. Fortunately it is open for
optimizations and maps well to a parallel problem!



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Interpolation - I

Assuming decent memory management, interpolation is our ’hard’ problem in offline
mode:

• file reading for every step
• find tracer positions on the mesh
• access mesh variables per interesting cell, per tracer
• implicit and/or higher-order schemes require several ambient time-steps...

Simple for a few Tracers, doesn’t scale for large numbers. Fortunately it is open for
optimizations and maps well to a parallel problem!



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Interpolation - II
Both file ’import’ and the interpolation can be done on a block basis



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Interpolation - III

Once the block is in memory, two general approaches can be considered

Tracer oriented
• typically bi-linear interpolation
• another z-order curve can be built to

optimize mesh node access
• simple, easy and robust
• one interpolation/quantity/Tracer/time

step
• limited optimizations available

Block oriented
• interpolate all the tile!
• splines, Lagrange interpolators, etc
• one interpolation/quantity/layer/time

step
• further abstracts the Tracers from the

ambient mesh
• may be useful for many Tracers
• available libraries



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Interpolation - III

Once the block is in memory, two general approaches can be considered

Tracer oriented
• typically bi-linear interpolation
• another z-order curve can be built to

optimize mesh node access
• simple, easy and robust
• one interpolation/quantity/Tracer/time

step
• limited optimizations available

Block oriented
• interpolate all the tile!
• splines, Lagrange interpolators, etc
• one interpolation/quantity/layer/time

step
• further abstracts the Tracers from the

ambient mesh
• may be useful for many Tracers
• available libraries



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Go Parallel

We described a very parallel problem

Distributed memory (MPI style)
• domain decomposition based
• blocks can be mapped to processes
• communication is minimized - just

send tracers from one block to another
• load balancing is not trivial, but we

might be limited to the domain
decomposition of the hydrodynamic
solution already stored, so we have
limited responsibility...

Shared memory (OMP style)
• each process (block or block group)

can be further subdivided into cells
• cells re-use all the block code
• load balancing is trivial and with plenty

of options
• because memory becomes more

coalesced, efficiency should increase
• directive based acceleration should be

sufficient



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Go Parallel

We described a very parallel problem

Distributed memory (MPI style)
• domain decomposition based
• blocks can be mapped to processes
• communication is minimized - just

send tracers from one block to another
• load balancing is not trivial, but we

might be limited to the domain
decomposition of the hydrodynamic
solution already stored, so we have
limited responsibility...

Shared memory (OMP style)
• each process (block or block group)

can be further subdivided into cells
• cells re-use all the block code
• load balancing is trivial and with plenty

of options
• because memory becomes more

coalesced, efficiency should increase
• directive based acceleration should be

sufficient



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

I/O formats

We should stay agnostic and portable - standard formats

Input files
• Demand NetCDF files (HDF5 is not a

format...)
• Not sure about geometries, shapefiles

Output files
• again, NetCDF should be default
• There are people working exclusively

on post-processors - use them.



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

I/O formats

We should stay agnostic and portable - standard formats

Input files
• Demand NetCDF files (HDF5 is not a

format...)
• Not sure about geometries, shapefiles

Output files
• again, NetCDF should be default
• There are people working exclusively

on post-processors - use them.



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Mapping the problem to Fortran

Follow the golden rules of Fortran and use OOP (Fortran 2008+):

• Minimize global variables (parameters and nothing else if possible)
• Use external libraries to handle strings, vectors, file I/O and guarantee KIND

portability across systems
• Be paranoid about compartmentalization and re-usability of code
• Avoid pointers
• Be pleasant to compilers and future coders
• ...

Fortran is very good with OOP nowadays
• ’Everything’ is an object from a given class
• Take advantage of unlimited polymorphic classes to reduce code size and hence

bug probability
• already have some library APIs ready to share



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Mapping the problem to Fortran

Follow the golden rules of Fortran and use OOP (Fortran 2008+):

• Minimize global variables (parameters and nothing else if possible)
• Use external libraries to handle strings, vectors, file I/O and guarantee KIND

portability across systems
• Be paranoid about compartmentalization and re-usability of code
• Avoid pointers
• Be pleasant to compilers and future coders
• ...

Fortran is very good with OOP nowadays
• ’Everything’ is an object from a given class
• Take advantage of unlimited polymorphic classes to reduce code size and hence

bug probability
• already have some library APIs ready to share



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Start with the basics - file structure

The code should be organized as both a library and an application, an
implementation of the library using its API (Application Programming Interface). So:

Project tree
• Application

• MOHIDLagrangian.exe
• MOHIDLagrangian.f90

• Library
• MOHIDLagrangian.lib

• tracers.f90
• interpolation.f90
• sources.f90
• ...

This is inherently modular, clean and
generates a .lib that can be used inside
MOHID for online solutions.



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Start with the basics - code documentation

The code should be self documented:

type :: paper_state_class !<Type - State variables of a
tracer object representing a paper material
real(prec) :: radius !< Tracer radius (m)
real(prec) :: condition !< Material condition (1-0)
real(prec) :: concentration !< Particle concentration
end type

I’ve been using Doxygen, that interprets these comments and generates
documentation. There are many options so we can structure the documentation to our
liking. Right now I’m generating html and latex documentation.



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Start with the basics - build solutions
I use Cmake to generate my solutions:



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Start with the basics - Continuous Integration,
tests, GIT use

• Use continuous integration (automatic builds)
• Use unit tests and grow you higher order tests
• Be paranoid about commits (my average is 8-10 a day) and branch (one per

feature)



MARETEC 2018

R.B. Canelas

Motivations

Moving forward

Problem structure
User Input

The Tracers

The internals

Code structure
User input

The mapping

Interpolation

The parallelization

The I/O

The philosophy

The basics

Next steps

Next few months

• Continue implementation of basic framework tools
• Arrive at a barebones working model
• Test the interpolation ideas (compare bilinear to continuous in

quality/performance)
• Search for turbulent diffusion models to include
• Search/implement closure models for different tracer types, starting with litter


	Motivations
	Moving forward
	Problem structure
	User Input
	The Tracers
	The internals

	Code structure
	User input
	The mapping
	Interpolation
	The parallelization
	The I/O
	The philosophy
	The basics

	Next steps

