MOHID-GLM : code developments for 3D waves-current interactions

Implementation of the glm2-RANS equations by Ardhuin et al. 2008

MOHIDing workshop – 7-8 June, 2018 – Lisbon, Portugal

Matthias Delpey - SUEZ

Center Rivages Pro Tech matthias.delpey@rivagesprotech.fr

Motivations

Need for 3D wave-current implementation

O 3D features in the flow may be generated by multiple factors

- Density stratification by continental freshwater outflows
- Wind-induced circulation
- Vertical shear in rip currents

 Surface gravity waves have a large impact on nearshore circulation in energetic environments

- Wave setup
- Longshore currents
- Rip currents
- Horiztonal & vertical mixing
- Etc.

 \rightarrow Need for 3D models including the effect of waves

Issue

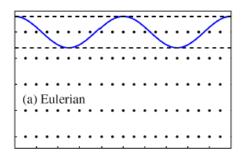
The difficulty of including waves in phase-averaged 3D models

O Decomposition of flow components

 \rightarrow Objective = representing interactions between mean flow and oscillating flow (momentum, mass, energy)

O Problem: it is difficult to apply an Eulerian average on phases in 3D

$$\overline{\phi(\mathbf{x},t)} = \frac{1}{T} \int_{-T/2}^{T/2} \phi(\mathbf{x},t+t') dt'$$
$$\Rightarrow \frac{1}{T} \int_{-T/2}^{T/2} \phi(\mathbf{x}+\boldsymbol{\xi},t+t') dt'$$



Main principle

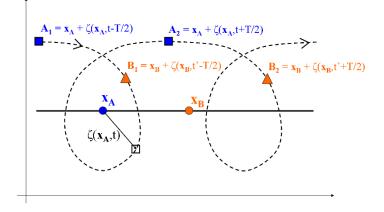
- O Derive new equations using a Lagrangian coordinate change, from the mean position X to the instantaneous position $X + \xi$
- ightarrow Allows to « follow » the oscillatory mouvement

Generalized Lagrangian Mean (Andrews & McIntyre, 1978)

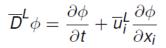
 $\overline{\phi(x,t)}^{L} = \overline{\phi(x+\zeta(x,t),t)}$

 \rightarrow New mean advection velocity + new Lagrangian derivation operator

- \rightarrow Application of the GLM to the RANS equations
- O Ardhuin et al. 2008 : asymptotic formulation of GLM equations for surface gravity waves → Development order 2
 - Small wave steepness
 - Limited vertical shear of the mean current
 - Slowly varying propagation environment



 $\overline{\mathbf{u}(\mathbf{x},t)}^L$



GLM2-RANS equations

O Momentum equation

$$\frac{\partial \underline{u}}{\partial t} + \frac{\partial u \underline{u}}{\partial x} + \frac{\partial v \underline{u}}{\partial y} + \frac{\partial w \underline{u}}{\partial z} - f \underline{v} \frac{1}{\rho} \frac{\partial p^{H}}{\partial x} = f V_{S} + \frac{\partial \underline{u}}{\partial x} U_{S} + \frac{\partial \underline{v}}{\partial x} V_{S} - \frac{\partial J}{\partial x} + F_{m,x} + F_{d,x}$$

where: u is now the GLM velocity (= tracer advection velocity)

 U_S , V_S = Stokes drift components

 $\underline{u} = u - U_s = quasi-Eulerian current$

p^H = hydrostatic pressure

J = wave-induced pressure (barotropic)

 $F_{m,x}$ = momentum flux from the turbulent mixing

 $F_{d,x}$ = momentum flux induced by wave breaking

f = Coriolis parameter

GLM2-RANS equations

• Wave induced pressure
$$J = g \frac{kE}{\sinh(2kD)}$$

• 3D Stokes drift
$$(U_s, V_s) = \sigma k(\cos \theta, \sin \theta) E \frac{\cosh(2kz + 2kh)}{\sinh^2(kD)}$$

O Wave-breaking induced flux of momentum:
$$(\tau_{oc,x}, \tau_{oc,y}) = \rho_w \cdot \int \frac{g}{C(f,\theta)} (\cos\theta, \sin\theta) S_{oc}(f,\theta) df d\theta$$

$$ightarrow$$
 Given by the wave model as an input to MOHID

GLM2-RANS equations

O Mass equation

$$\frac{\partial \underline{\eta}}{\partial t} + \frac{\partial D(\overline{\underline{u}} + \overline{U_s})}{\partial x} + \frac{\partial D(\overline{\underline{v}} + \overline{V_s})}{\partial y} = 0$$

where: u is now the GLM velocity (= tracer advection velocity) U_S , V_S = Stokes drift components <u>n</u> mean free surface elevation D total water depth upper bar = vertical integration

GLM2-RANS equations

O Surface boundary condition

$$\frac{\partial \underline{\eta}}{\partial t} + (\underline{u} + U_s) \frac{\partial \underline{\eta}}{\partial x} + (\underline{v} + V_s) \frac{\partial \underline{\eta}}{\partial y} = \underline{w} + W_s$$

$$K_{M} \, \frac{\partial \underline{u}_{\alpha}}{\partial z} = \tau_{a,\alpha} - \tau_{aw,\alpha}$$

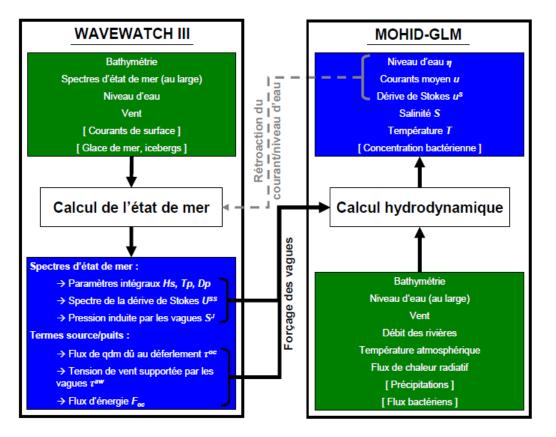
O Bottom boundary condition $\underline{u}\frac{\partial h}{\partial x} + \underline{v}\frac{\partial h}{\partial y} = \underline{w} \qquad \qquad K_M \frac{\partial \underline{u}_\alpha}{\partial t} = \rho C_D |\underline{u}| \underline{u}_\alpha + \tau_{cw,\alpha}$

With \underline{w} the vertical component of the quasi-Eulerian velocity W_S the vertical components of the Stokes drift (given by the wave model)

 $\tau_{a,\alpha}$ = total wind stress

 $\tau_{aw,\alpha}$ = wind stress supported by waves (given by the wave model)

Implementation of MOHID-GLM



Implementation of MOHID-GLM

MOHID Water modifications

- O Conservative formulation
- O Reading of additional forcing variables (Module Waves)
- Compute Us, Vs from the frequency spectrum of the Stokes Drift (Module Waves)
- O Add Us, Vs in advection terms (Module Hydrodynamic)
- O Add contribution of J and Fd in the momentum equation (Module Hydrodynamic)
- O Modify boundary conditions (Modules Hydrodynamic, InterfaceWaterAir, InterfaceSedimentWater)
- Modify surface boundary conditions for TKE equation in the k-epsilon model (Modules GOTM and InterfaceWaterAir)
- \rightarrow For detailed discretization see: Delpey 2012.

Mass conservation:

$$\frac{\partial \eta}{\partial t} = -\frac{\partial}{\partial x_{\alpha}} \underbrace{\left(\int_{-h}^{\eta} (u_{\alpha} + \overline{u}_{\alpha}^{S}) \mathrm{dz} \right)}_{\mathcal{A}}.$$

Horizonal momentum conservation:

$$\frac{\partial u_{\alpha}}{\partial t} + \underbrace{\partial \left[u_{\alpha}(u_{\beta} + \overline{u}_{\beta}^{S}) \right]}_{\partial x_{\beta}} + \frac{\partial \left[u_{\alpha}(w + \overline{w}^{S}) \right]}{\partial z}}_{\partial z}$$

$$= -\frac{1}{\rho_{0}} \frac{\partial p^{a}}{\partial x_{\alpha}} + (-g + b(\eta)) \frac{\partial \eta}{\partial x_{\alpha}} + \int_{z}^{\eta} \frac{\partial b}{\partial x_{\alpha}} dz - \underbrace{\partial S^{J}}_{\partial x_{\alpha}} + \overline{u}_{\beta}^{S} \frac{\partial u_{\beta}}{\partial x_{\alpha}}}_{\partial x_{\beta}}$$

$$+ \frac{\partial}{\partial x_{\beta}} \left(K_{H} \frac{\partial u_{\alpha}}{\partial x_{\beta}} \right) + \frac{\partial}{\partial z} \left(K_{V} \frac{\partial u_{\alpha}}{\partial z} \right).$$

Vertical advection velocity:

$$\overline{w}^{L} = w + \overline{w}^{S} = -\frac{\partial}{\partial x_{\alpha}} \left(\int_{-h}^{z} (u_{\alpha} + \overline{u}_{\alpha}^{S}) dz \right)$$

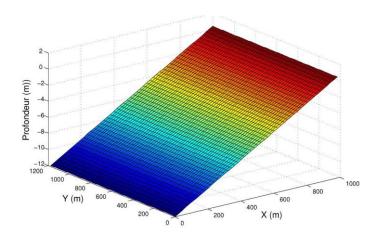
Tracer equation:

$$\frac{\partial C}{\partial t} + \underbrace{\frac{\partial \left[(u_{\alpha} + \overline{u}_{\alpha}^{S})C \right]}{\partial x_{\alpha}} + \frac{\partial \left[(w + \overline{w}^{S})C \right]}{\partial z}}_{\partial z}}_{\partial z} = \frac{\partial}{\partial x_{\alpha}} \left(\frac{K_{H}}{\sigma_{C}} \frac{\partial C}{\partial x_{\alpha}} \right) + \frac{\partial}{\partial z} \left(K_{T} \frac{\partial C}{\partial z} \right) + S_{C}.$$

10 | MOHIDing 2018 - 7-8 June, 2018 - Lisbon [M. Delpey]

Validation of MOHID GLM

Haas & Warner 2009 case



Profondeur (m) -4 -6 -8 u (m/s) -10 -0.3 -0.2 -0.1 0 0.1 0.2 -120 400 600 x (m) 200 800 1000 Profondeur (m) -6 v (m/s) -8 -10-0.9 -0.6 -0.3

x (m)

800

1000

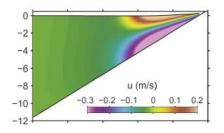
400

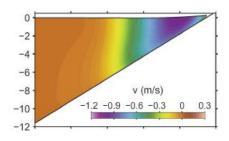
-12-

200

Solution de MOHID-GLM ($z_{0,s} = 0.2H_S$)

Solution de ROMS [Uchiyama et al., 2010]

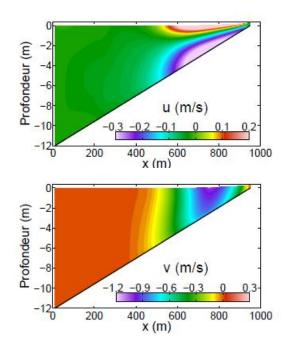




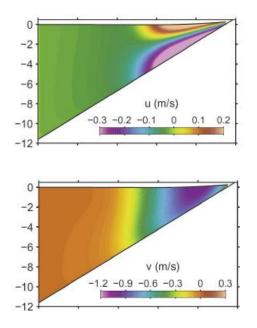
Validation of MOHID GLM

Haas & Warner 2009 case

Solution de MOHID-GLM ($z_{0,s} = 0.2H_S$)



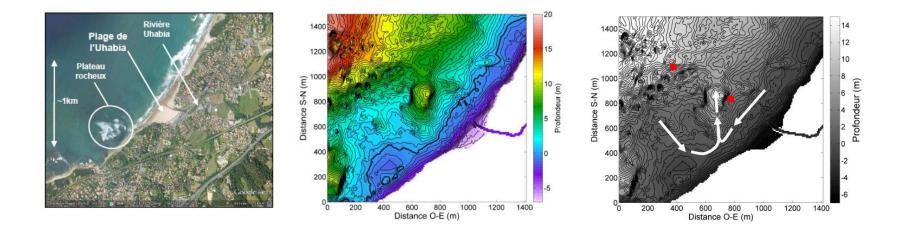
Solution de ROMS [Uchiyama et al., 2010]



12 | MOHIDing 2018 - 7-8 June, 2018 - Lisbon [M. Delpey]

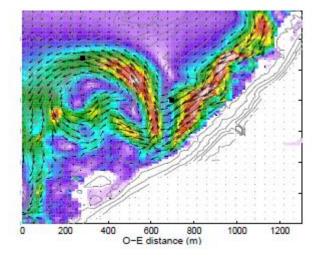
Real case application

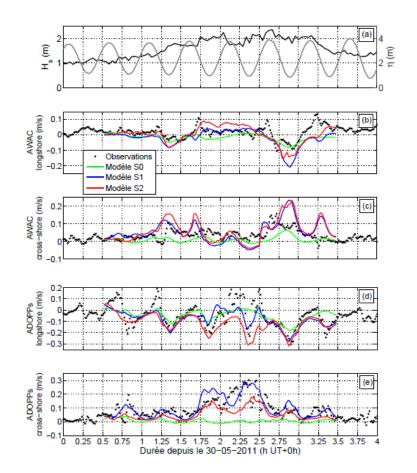
Application to the Uhabia beach, SW France



Real case application

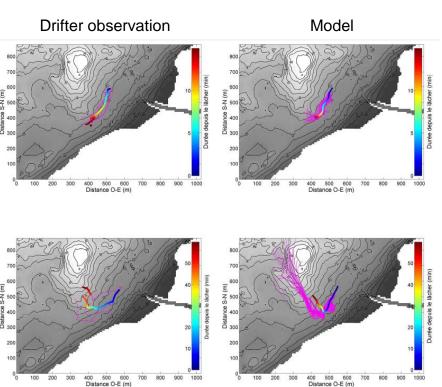
Application to the Uhabia beach, SW France





Real case application

Application to the Uhabia beach, SW France



15 I MOHIDing 2018 - 7-8 June, 2018 - Lisbon [M. Delpey]

A (very) simplified formulation

Exponential vertical decrease of radiation stress

$$S_{ij}'(x, y, z) = \frac{ke^{kz}}{e^{k\eta} - e^{-kh}} S_{ij}(x, y)$$

k = wave number, h = depth, η = free surface elevation

O No theoritical justification → « Empirical »

O Principle: consistant with barotropic balance + having a vertical distribution « a bit more plausible » than using homogeous vertical distribution of wave radiation stree

 \bigcirc Allows to produce some features like undertow \rightarrow See e.g. Franz et al. 2017

MOHID-GLM : code developments for 3D waves-current interactions

Implementation of the glm2-RANS equations by Ardhuin et al. 2008

MOHIDing workshop – 7-8 June, 2018 – Lisbon, Portugal

Matthias Delpey - SUEZ

Center Rivages Pro Tech matthias.delpey@rivagesprotech.fr

