
New parameterizations in the MOHIDLagrangian model

Mohsen Shabani
Universidad de Santiago de Compostela

June 24, 2025

1 / 31

Overview

1. General information

2. Lagrangian Kinematic

3. Diffusion Mixing Length

4. Buoyancy

5. Resuspension

6. Outlook

7. Simulation

2 / 31

General information

Figure: A Python code to convert HDF5 file to NetCDF4 format.

3 / 31

General information

Base Paper Plastic Coliform Seed Detritus

LagrangianKinematic M✓ M✓ M✓ M✓ M✓ M✓
StokesDrift M✓ M✓ M✓ M✓ M✓ M✓
Windage M✓ M✓ M✓
DiffusionMixingLength M✓ M✓ M✓ M✓ M✓ M✓
Aging M✓ M✓ M✓ M✓ M✓ M✓
DegradationLinear L✓ L✓
Buoyancy V✓ V✓ V✓ V✓
Resuspension V✓ V✓ V✓ V✓
BioFouling L✓
MortalityT90 C✓
Dilution C✓
Degradation D✓

4 / 31

kernel.f90
function Lagrangian Kinematic (self , sv , bdata , time)

Figure: distance to the bottom

5 / 31

kernel.f90
function Lagrangian Kinematic (self , sv , bdata , time)

U∗ =
k U(Zdwz)

ln(
Zdwz

z0
)

⇒ U(z) = U(Zdwz)
k

ln(
Zdwz

z0
)

ln(
z

z0
)

k

⇒ U(z) = U(Zdwz)

ln(
z

z0
)

ln(
Zdwz

z0
)

, z0 ≤ z ≤ Zdwz and U : [u, v ,w]

In MOHIDLagrangian:

where (dist2bottom < threshold_bot_wat)

aux_r8 = max((sv%state(:,col_dwz)/2),Hmin_Chezy) /

Globals%Constants%Rugosity

chezyZ = (VonKarman / dlog(aux_r8))**2

sv%state (:,4) = var_hor_dt (:,col_u) * chezyZ

sv%state (:,5) = var_hor_dt (:,col_v) * chezyZ

end where

6 / 31

kernel.f90
function Lagrangian Kinematic (self , sv , bdata , time)

• The last measurement which is corresponed
to last dwz , is variable (i.e., 2.0 to 0.1
meters).

• Hence, the threshold could be defined in the
rugosity (z0) scale (e.g. 10 · z0).

• threshold bot wat 0.5, while we can
define it as 0 (the last measurement).

• function LagrangianVelModification

is created to modify the velocities.

7 / 31

kernel.f90
function DiffusionMixingLength (self , sv , bdata , time , dt)

• Random velocity for direction (random walk) i = {x , y , z}

v randi = (2ri − 1)

√
α · Di

dt
where ri ∼ U(0, 1)

d

dt
v randi = (2ri − 1) · 1

dt

√
α · Di · |vi |

dt
where ri ∼ U(0, 1)

• Turbulent diffusion coefficient unit,Di , is [m
2s−1].

8 / 31

kernel.f90
function DiffusionMixingLength (self , sv , bdata , time , dt)

• if sv%state(:,10) > 2 · sv%resolution and sv%landIntMask < landVal

DiffusionMixingLength(:,7) =
d

dt
v randx , α = 1

DiffusionMixingLength(:,8) =
d

dt
v randy , α = 1

DiffusionMixingLength(:,9) =
d

dt
v randZ , α = 10−6

DiffusionMixingLength(:,10) = 0.0

DiffusionMixingLength(:,i) i=7,8,9 are corresponded to the derivative of
diffusion velocity in the directions of x , y , z . Also, DiffusionMixingLength(:,10)
represents the derivative of diffusion mixing length.

9 / 31

kernel.f90
function DiffusionMixingLength (self , sv , bdata , time , dt)

Then, the new position will be modified based on the velocities calculated above.

dx = m2geo(
d

dt
v randx , lon) · dt

dy = m2geo(
d

dt
v randy , lat) · dt

dz =
d

dt
v randz · dt

DiffusionMixingLength(:,1) = Utils%m2geo(DiffusionMixingLength(:,7), sv%state(:,2), .false.)*dt

DiffusionMixingLength(:,2) = Utils%m2geo(DiffusionMixingLength(:,8), sv%state(:,2), .true.)*dt

DiffusionMixingLength(:,3) = DiffusionMixingLength(:,9)*dt

The kernel operates on the time derivative. Since x = vt, taking the derivative with
respect to time yields the velocity v . Therefore, to correctly update positions, the
corresponding velocity must be included in the kernel. d

dt v
rand
i · dt = v randi

10 / 31

kernel.f90
function DiffusionMixingLength (self , sv , bdata , time , dt)

d

dt
v randi = (2ri − 1) · 1

dt

√
α · Di · |vi |

dt
where ri ∼ U(0, 1)

• Why is it multiplied by vi?

• One possible limitation of the random walk model arises in regions where the velocity
vi is zero or nearly zero. By multiplying by vi , we ensure that the random walk
component becomes zero and is effectively excluded from the calculation.

• Since multiplying by vi introduces a unit inconsistency. It may be more appropriate
to use a binary (dimensionless) switch to activate or deactivate the random walk
term in such regions.

11 / 31

kernelVerticalMotion.f90
function Buoyancy(self, sv, bdata, time)

• Modification of z position regarding the buoyancy term in MOHIDLagrangian

Buoyancy(:,3) =

signz ·
√
−2g · S

Cd
· Rρ, if Re ̸= 0 and dist2bottom > threshold

0, otherwise

• While S in MOHIDLagrangian called as shape factor,

SMOHIDLagrangian =
(6πVreal)

1
3

(4πAreal)
1
2

[1]

Please note that Buoyancy(:,3) should be in the unit of velocity [m/s].

12 / 31

kernelVerticalMotion.f90
function Buoyancy(self, sv, bdata, time)

• Let’s do a unit check in the mentioned formula in MOHIDLagrangian,

Buoyancy(:,3) =

signz [1] ·

√
−2g [

m

s2
] · S [1]

Cd [1]
· Rρ[1], if Cond.

0, otherwise

Buoyancy(:,3) =

[1] ·

√
[
m

s2
] · [1]

[1]
· [1] =

√
[
m

s2
] ̸=[

m

s
], if Cond.

0, otherwise

In MOHIDLagrangian, we have unit inconsistency.

13 / 31

kernelVerticalMotion.f90
Buoyancy Calculation

Lets consider a particle with 3 forces, its weightFW , buoyancyFB , dragFD . Assume that
the positive direction is upward and buoyancy and drag force are in the positive direction.
Hence,

FD + FB = FW .

By replacing the forces and considering shape factor,Φ,

1

2
ρf CD,refΦACS ,realv

2 + ρf gVreal = −ρpgVreal .

Now, by rearranging the above equation the velocity of particle will be:

v =

√
−2g(

ρp − ρf
ρf

)
1

ΦCD,ref

Vreal

ACS ,real
=

√
−2g · Rρ ·

1

ΦCD,ref
· Vreal

ACS ,real
[m/s].

14 / 31

kernelVerticalMotion.f90
Buoyancy Calculation

On the other side, the shape factor can be defined as1.

Φ =
Actual surface area of particle

Surface area of the sphere of same volume

where
sphericity, ψ , is the inverse of the shape factor.

• Φ = 1 is the reference case and corresponds to a sphere.

• Φ > 1 is corresponded to a Prolate spheroid (elongated).

• Φ < 1 is corresponded to an Oblate spheroid (flattened).

• Φ >> 1 is corresponded to a Flat plate.

Vreal =
4

3
πr3shpere ⇒ rshpere = (

3

4π
Vreal)

1

3

1Please pay attention that we have different methods to consider shape factor, but at the end it should
be dimensionless

15 / 31

kernelVerticalMotion.f90
Buoyancy Calculation

Φ =
Actual surface area of particle

Surface area of the sphere of same volume

Hence,

Φ =
Areal

4π(rreal)2
=

Areal

4π(
3

4π
Vreal)

2

3

=
Areal

π
1
3 (6Vreal)

2
3

16 / 31

kernelVerticalMotion.f90
Buoyancy Calculation

• In the previous formula, CD is a function of the Reynolds number.

• Reynolds number has to calculate in the relative velocity (wrel = |wp − wf |).
Hence, this form of formula needs an iterative method.

• MOHIDLagrangian uses explicit solver and using iterative method to calculate each
settling velocity particle in each time step is not cost-effective.

• In MOHIDLagrangian,

MeanKvisco = 10−3 ⇒ 10−6 (kVisco = Globals%Constants%MeanKvisco)

fDensity = seaWaterDensity(sv%state(:,col sal), sv%state(:,col temp),sv%state(:,3))

kVisco = absoluteSeaWaterViscosity(sv%state(:,col sal), sv%state(:,col temp)) /fDensity

reynoldsNumber = self%Reynolds(sv%state(:,6), kvisco, sv%state(:,rIdx)*2)

17 / 31

kernelVerticalMotion.f90
Buoyancy Calculation

• Other options to calculate settling velocity

18 / 31

kernelVerticalMotion.f90
function Resuspension(self, sv, bdata, time,dt)

• Resuspension model in MOHIDLagrangian (if (dist2bottom(i) < landIntThreshold) then)

19 / 31

kernelVerticalMotion.f90
function Resuspension(self, sv, bdata, time,dt)

• If sea surface wave data exists:

!Average velocity

U = sqrt(sv%state(i,4) **2.0 + sv%state(i,5) **2.0)/

0.4* (dlog(bat/z0(i)) - 1.0 + z0(i)/bat)

Recall the velocity based on log-law, where z is calculated from the seabed.

U(z) =
U∗

k
ln (

z

z0
), z = Z − Zbath

Hence, the average velocity along this layer will be:

Ū =

∫ H

0
U(z)dz =

U∗

k

{
ln(

H

z0
)− 1 +

z0
H

}
, H = Zdwz − Zbath.

20 / 31

kernelVerticalMotion.f90
function Resuspension(self, sv, bdata, time,dt)

• Deposition of the particle (if (tension > Globals%Constants%Critical Shear Erosion) then)

where ((dist2bottom < landIntThreshold) .and. Tension >

Globals%Constants%Critical_Shear_Erosion)

!Tracer gets positive vertical velocity which corresponds

to a percentage of the velocity modulus

!Resuspension (:,3) = Globals%Constants%ResuspensionCoeff

* velocity_mod

!tracers gets brought up to 0.5m

Resuspension (:,3) = 0.5/dt

end where

Question: How does it show those suspended particles that move just above the
seabed?

21 / 31

kernelVerticalMotion.f90
function Resuspension(self, sv, bdata, time,dt)

Question: How does it show those suspended particles that move just above the seabed?

• Find the U∗ based on the log-law and later find the τwall = ρU∗2.

• Consider a threshold in rugosity scale (e.g. 10 · z0).

• Lower than this threshold we Do not have a Lagrangian kinematic movement But
if τwall > τcr (resuspension condition) the particles move with the same velocity of
the log-law.

• Buoyancy could affect on the particles which exist in this layer

• Resuspension Model can be replaced with a new model.

22 / 31

kernelVerticalMotion.f90
Resuspension: Deposition of the particles(Other option)

• Deposition: MDpos = ws · C · (1− τwall
τcr ,Dpos

), τwall < τcr ,Dpos

• MDpos : flux rate of deposition (kg/m2/s)
• ws : settling velocity (m/s)
• C : particle concentration (kg/m3)

This is for the Flux rate of deposition, and it can use in the advection-diffusion equation as the flux at the

boundaries.The MOHIDLagrangian works with particles and number of them. Hence, how we do we can use

it in MOHIDLagrangian?

• Deposited particles (kg)

Total mass (kg)
=

MDpos ·∆t · Awall

C · Awall · h

• PDpos = min{1, ws ·∆t

h
· (1− τwall

τcr ,Dpos
)}

23 / 31

kernelVerticalMotion.f90
Resuspension: Deposition of the particles(Other option)

• PDpos = min{1, ws ·∆t

h
· (1− τwall

τcr ,Dpos
)}

• We can consider it as the portion of the deposited particles or probability of the
deposition.

• The easiest way is to assume it as the probability of deposition of the particles, and
by a random number, Rand , in the interval of [0,1]:

• if zp < h and τwall < τcr ,Dpos

if Rand < PDpos then The particle deposits
if Rand > PDpos then particle moves with the flow

• This method does not guaranty that the exact number of particle deposit.

24 / 31

kernelVerticalMotion.f90
Resuspension: Erosion of the particles(Other option)

• Erosion flux rate (kg/m2/s):

MEro = M0

(
τwall
τcr ,Ero

− 1

)
, τwall > τcr ,Ero

• Fraction of eroded mass:
MEro ·∆t · Awall

ρs · Awall · h
• Erosion probability:

PEro = min

{
1,

M0 ·∆t

ρp · h
·
(
τwall
τcr ,Ero

− 1

)
or α ·

(
τwall
τcr ,Ero

− 1

)}
• It is assumed that all particles are distributed uniformly. Otherwise, a tuning parameter
α could be used.

• If zp < h and τwall > τcr ,Ero
• If Rand < PEro then particle is eroded (released)
• If Rand > PEro then particle stays on bed

25 / 31

Outlook

• Add a new model for windage 2

• Add a new model for biofouling 2

• Consider the variation of the particle radius which can effect on the buoyancy and
biofouling.

2Jalón-Rojas, I., Wang, X. H., & Fredj, E. (2019). A 3D numerical model to Track Marine Plastic
Debris (TrackMPD): Sensitivity of microplastic trajectories and fates to particle dynamical properties and
physical processes. Marine pollution bulletin, 141, 256-272.

26 / 31

Simulation
Ŕıa de Arousa

• Comparison of three different
densities by using a new model
for bouyancy term (setteling
velocity).

• Horizental view
• Vertical view

• Comparison of the old and new
buoyancy models for
the density= 1030 kg/m3.

27 / 31

Simulation: New models
Ŕıa de Arousa: Comparison of different densities (Horizontal view)

28 / 31

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

Simulation: New models
Ŕıa de Arousa: Comparison of different densities (Vertical view)

29 / 31

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

Simulation
Ŕıa de Arousa: Comparison of the old and new models

30 / 31

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

Thank you for your attention

31 / 31

	General information
	Lagrangian Kinematic
	Diffusion Mixing Length
	Buoyancy
	Resuspension
	Outlook
	Simulation

	fd@rm@2:
	fd@rm@1:
	fd@rm@0:

