New parameterizations in the MOHIDLagrangian model

Mohsen Shabani

Universidad de Santiago de Compostela

June 24, 2025

Overview

- 1. General information
- 2. Lagrangian Kinematic
- 3. Diffusion Mixing Length
- 4. Buoyancy
- 5. Resuspension
- 6. Outlook
- 7. Simulation

General information

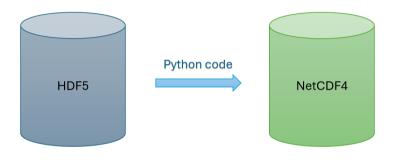
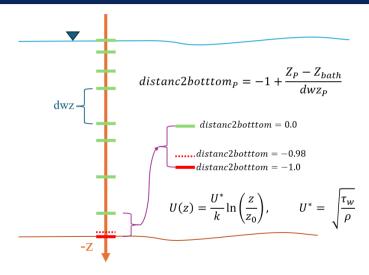


Figure: A Python code to convert HDF5 file to NetCDF4 format.

General information

	Base	Paper	Plastic	Coliform	Seed	Detritus
LagrangianKinematic	M√	M√	M√	M√	M√	M√
StokesDrift	M√	M√	M√	M√	M√	M√
Windage	M√	M√	M√			
DiffusionMixingLength	M√	M√	M√	M√	M✓	M√
Aging	M√	M√	M√	M√	M√	M√
DegradationLinear		L√	L√			
Buoyancy		V✓	V√		V✓	V√
Resuspension		V√	V√		V✓	V√
BioFouling			L√			
MortalityT90				C√		
Dilution				C√		
Degradation						D√

${f function}$ Lagrangian Kinematic (${\sf self}$, ${\sf sv}$, ${\sf bdata}$, ${\sf time}$)



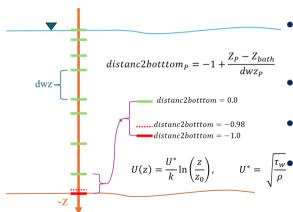
iunction Lagrangian Kinematic(self, sv, bdata, time)

$$U^* = \frac{k \quad U(Z_{dwz})}{\ln(\frac{Z_{dwz}}{z_0})} \Rightarrow U(z) = U(Z_{dwz}) \quad \frac{k}{\ln(\frac{Z_{dwz}}{z_0})} \frac{\ln(\frac{Z}{z_0})}{k}$$
$$\Rightarrow U(z) = U(Z_{dwz}) \quad \frac{\ln(\frac{Z}{z_0})}{\ln(\frac{Z_{dwz}}{z_0})}, \quad z_0 \le z \le Z_{dwz} \quad and \quad U: [u, v, w]$$

In MOHIDLagrangian:

```
where (dist2bottom < threshold_bot_wat)
    aux_r8 = max((sv%state(:,col_dwz)/2),Hmin_Chezy) /
        Globals%Constants%Rugosity
    chezyZ = (VonKarman / dlog(aux_r8))**2
    sv%state(:,4) = var_hor_dt(:,col_u) * chezyZ
    sv%state(:,5) = var_hor_dt(:,col_v) * chezyZ
end where</pre>
```

function Lagrangian Kinematic(self, sv, bdata, time)



- The last measurement which is corresponed to last dwz, is variable (i.e., 2.0 to 0.1 meters).
- Hence, the threshold could be defined in the rugosity (z₀) scale (e.g. 10 · z₀).
- threshold_bot_wat 0.5, while we can define it as 0 (the last measurement).
- $U^* = \sqrt{\frac{\tau_w}{\rho}}$ function LagrangianVelModification is created to modify the velocities.

function DiffusionMixingLength(self, sv, bdata, time, dt)

• Random velocity for direction (random walk) $i = \{x, y, z\}$

$$v_i^{\mathsf{rand}} = (2r_i - 1)\sqrt{\frac{\alpha \cdot D_i}{dt}}$$
 where $r_i \sim U(0, 1)$

$$\frac{d}{dt}v_i^{\mathsf{rand}} = (2r_i - 1) \cdot \frac{1}{dt} \sqrt{\frac{\alpha \cdot D_i \cdot |v_i|}{dt}}$$
 where $r_i \sim U(0, 1)$

• Turbulent diffusion coefficient unit, D_i , is $[m^2s^{-1}]$.

unction DiffusionMixingLength(self, sv, bdata, time, dt)

• if sv%state(:,10) > $2 \cdot \text{sv%resolution}$ and sv%landIntMask < landVal DiffusionMixingLength(:,7) = $\frac{d}{dt}v_x^{rand}$, $\alpha=1$ DiffusionMixingLength(:,8) = $\frac{d}{dt}v_y^{rand}$, $\alpha=1$ DiffusionMixingLength(:,9) = $\frac{d}{dt}v_z^{rand}$, $\alpha=10^{-6}$ DiffusionMixingLength(:,10) = 0.0

DiffusionMixingLength(:,i) i=7,8,9 are corresponded to the derivative of diffusion velocity in the directions of x, y, z. Also, DiffusionMixingLength(:,10) represents the derivative of diffusion mixing length.

function DiffusionMixingLength(self, sv, bdata, time, dt)

Then, the new position will be modified based on the velocities calculated above.

$$dx = m2geo(\frac{d}{dt}v_x^{rand}, lon) \cdot dt$$
 $dy = m2geo(\frac{d}{dt}v_y^{rand}, lat) \cdot dt$
 $dz = \frac{d}{dt}v_z^{rand} \cdot dt$

```
DiffusionMixingLength(:,1) = Utils%m2geo(DiffusionMixingLength(:,7), sv%state(:,2), .false.)*dt

DiffusionMixingLength(:,2) = Utils%m2geo(DiffusionMixingLength(:,8), sv%state(:,2), .true.)*dt

DiffusionMixingLength(:,3) = DiffusionMixingLength(:,9)*dt
```

The kernel operates on the time derivative. Since x = vt, taking the derivative with respect to time yields the velocity v. Therefore, to correctly update positions, the corresponding velocity must be included in the kernel. $\frac{d}{dt}v_i^{\rm rand} \cdot dt = v_i^{\rm rand}$

function DiffusionMixingLength(self, sv, bdata, time, dt)

$$\frac{d}{dt}v_i^{\mathsf{rand}} = (2r_i - 1) \cdot \frac{1}{dt} \sqrt{\frac{\alpha \cdot D_i \cdot |v_i|}{dt}}$$
 where $r_i \sim U(0, 1)$

- Why is it multiplied by v_i ?
- One possible limitation of the random walk model arises in regions where the velocity v_i is zero or nearly zero. By multiplying by v_i , we ensure that the random walk component becomes zero and is effectively excluded from the calculation.
- Since multiplying by v_i introduces a unit inconsistency. It may be more appropriate to use a binary (dimensionless) switch to activate or deactivate the random walk term in such regions.

kernelVerticalMotion.f90 function Buoyancy(self, sv, bdata, time)

Modification of z position regarding the buoyancy term in MOHIDLagrangian

$$\texttt{Buoyancy(:,3)} = \begin{cases} \mathsf{sign}_z \cdot \sqrt{-2g \cdot \frac{S}{C_d} \cdot R_\rho}, & \text{if } Re \neq 0 \text{ and } \mathsf{dist2bottom} > \mathsf{threshold} \\ 0, & \mathsf{otherwise} \end{cases}$$

• While S in MOHIDLagrangian called as shape factor,

$$S_{MOHIDLagrangian} = rac{(rac{6}{\pi}V_{real})^{rac{1}{3}}}{(rac{4}{\pi}A_{real})^{rac{1}{2}}} \quad [1]$$

Please note that Buoyancy(:,3) should be in the unit of velocity [m/s].

kernelVerticalMotion.f90 function Buoyancy(self, sv, bdata, time)

• Let's do a unit check in the mentioned formula in MOHIDLagrangian,

$$\begin{aligned} \operatorname{Buoyancy}(:,3) &= \begin{cases} \operatorname{sign}_z[1] \cdot \sqrt{-2g[\frac{m}{s^2}] \cdot \frac{S[1]}{C_d[1]}} \cdot R_{\rho}[1], & \text{if Cond.} \\ 0, & \text{otherwise} \end{cases} \\ \operatorname{Buoyancy}(:,3) &= \begin{cases} [1] \cdot \sqrt{[\frac{m}{s^2}] \cdot \frac{[1]}{[1]}} \cdot [1] = \sqrt{[\frac{m}{s^2}]} \neq [\frac{m}{s}], & \text{if Cond.} \\ 0, & \text{otherwise} \end{cases} \end{aligned}$$

In MOHIDLagrangian, we have unit inconsistency.

Lets consider a particle with 3 forces, its weight F_W , buoyancy F_B , drag F_D . Assume that the positive direction is upward and buoyancy and drag force are in the positive direction. Hence,

$$F_D + F_B = F_W$$
.

By replacing the forces and considering shape factor, Φ ,

$$\frac{1}{2}\rho_f \textit{C}_{D,ref} \Phi \textit{A}_{\textit{CS},\textit{real}} \textit{v}^2 + \rho_f \textit{gV}_{\textit{real}} = -\rho_p \textit{gV}_{\textit{real}}.$$

Now, by rearranging the above equation the velocity of particle will be:

$$v = \sqrt{-2g(\frac{\rho_p - \rho_f}{\rho_f})\frac{1}{\Phi C_{D,ref}} \frac{V_{real}}{A_{CS,real}}} = \sqrt{-2g \cdot R_\rho \cdot \frac{1}{\Phi C_{D,ref}} \cdot \frac{V_{real}}{A_{CS,real}}} \quad [m/s].$$

On the other side, the **shape factor** can be defined as¹.

$$\Phi = \frac{\text{Actual surface area of particle}}{\text{Surface area of the sphere of same volume}}$$

where

 $\mbox{\bf sphericity},\ \psi$, is the inverse of the shape factor.

- $\Phi = 1$ is the reference case and corresponds to a sphere.
- $\Phi > 1$ is corresponded to a **Prolate spheroid** (elongated).
- $\Phi < 1$ is corresponded to an **Oblate spheroid** (flattened).
- $\Phi >> 1$ is corresponded to a **Flat plate**.

$$V_{real} = \frac{4}{3}\pi r_{shpere}^3 \Rightarrow r_{shpere} = (\frac{3}{4\pi}V_{real})^{\frac{1}{3}}$$

¹Please pay attention that we have different methods to consider shape factor, but at the end it should be dimensionless

$$\Phi = \frac{\text{Actual surface area of particle}}{\text{Surface area of the sphere of same volume}}$$

Hence,

$$\Phi = \frac{A_{real}}{4\pi (r_{real})^2} = \frac{A_{real}}{4\pi (\frac{3}{4\pi} V_{real})^{\frac{2}{3}}} = \frac{A_{real}}{\pi^{\frac{1}{3}} (6V_{real})^{\frac{2}{3}}}$$

- In the previous formula, C_D is a function of the Reynolds number.
- Reynolds number has to calculate in the relative velocity ($w_{rel} = |w_p w_f|$). Hence, this form of formula needs an iterative method.
- MOHIDLagrangian uses explicit solver and using iterative method to calculate each settling velocity particle in each time step is not cost-effective.
- In MOHIDLagrangian,

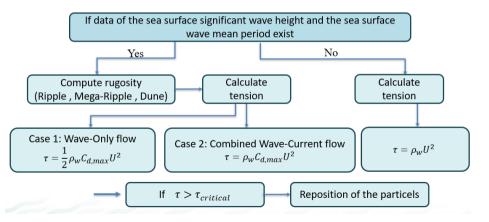
```
\label{eq:meankvisco} \begin{tabular}{ll} Meankvisco &= 10^{-3} \Rightarrow 10^{-6} & $kVisco = Globals\%Constants\%Meankvisco)$ \\ fDensity &= seaWaterDensity(sv\%state(:,col\_sal), sv\%state(:,col\_temp), sv\%state(:,3)) \\ kVisco &= absoluteSeaWaterViscosity(sv\%state(:,col\_sal), sv\%state(:,col\_temp)) / fDensity \\ reynoldsNumber &= self\%Reynolds(sv\%state(:,6), kvisco, sv\%state(:,rIdx)*2) \\ \end{tabular}
```

Other options to calculate settling velocity

Review of formulations for terminal settling/rising velocities of plastics used in the reviewed numerical studies; $\Delta \rho = \frac{\rho_p - \rho_w}{c_p}$, $c_1 = 53.5 \exp(-0.65\Psi)$, $c_2 = 5.65 \exp(-2.5\Psi)$, $c_3 = 0.7 + 0.9\Psi$.

Reference	Expression		Particle shape
Lamb (1924)	$w_t = -\frac{g\Delta\rho D_n^2}{18v_w}, \rho_p > \rho_w$	(C.4)	Spherical particles
Elliott (1986)	$w_i = -\frac{gD_n^2\Delta\rho}{18v_w}, \rho_p < \rho_w$	(C.5)	Spherical particles with $D_n < D_{\rm cr}$
Elliott (1986)	$w_t = \left(-\frac{8}{3}gD_n\Delta\rho\right)^{1/2}, \rho_p < \rho_w$	(C.6)	Spherical particles with $D_n > D_{\rm cr}$
Wu and Wang (2006)	$w_{t} = -\frac{c_{1}v_{w}}{c_{2}D_{n}} \left[\sqrt{\frac{1}{4} + \left(\frac{4c_{2}}{3c_{1}^{2}}D_{*}^{3}\right)^{1/c_{3}}} - \frac{1}{2} \right]^{c_{3}}, \rho_{p} > \rho_{w}$	(C.7)	Sediment particles
Zhiyao et al. (2008)	$w_t = -\frac{v_w}{D_n} D_*^3 (38.1 + 0.93 D_*^{12/7})^{-7/8}, \rho_p > \rho_w$	(C.8)	Sediment particles
Khatmullina and Isachenko (2017)	$w_t = -\frac{\pi}{2} \frac{g \Delta \rho}{v_w} \frac{D_n l_{\text{max}}}{55.238 l_{\text{max}} + 12.691}, \rho_p > \rho_w$	(C.9)	Cylindrical plastics
Wang et al. (2021)	$w_t = -1.0434(\Delta \rho g)^{0.495} \frac{D_n^{0.777} \Psi^{0.710}}{v_w^{0.124}}, \rho_p > \rho_w$	(C.10)	Irregularly shaped plastics

kernelVerticalMotion.f90 function Resuspension(self, sv, bdata, time,dt)



kernelVerticalMotion.f90

function Resuspension(self, sv, bdata, time,dt)

• If sea surface wave data exists:

```
! Average velocity
U = sqrt(sv%state(i,4)**2.0 + sv%state(i,5)**2.0)/
0.4* (dlog(bat/z0(i)) - 1.0 + z0(i)/bat)
```

Recall the velocity based on log-law, where z is calculated from the seabed.

$$U(z) = \frac{U^*}{k} \ln{\left(\frac{z}{z_0}\right)}, \quad z = Z - Z_{bath}$$

Hence, the average velocity along this layer will be:

$$ar{U}=\int_0^H U(z)dz=rac{U^*}{k}igg\{\ln(rac{H}{z_0})-1+rac{z_0}{H}igg\},\quad H=Z_{dwz}-Z_{bath}.$$

kernelVerticalMotion.f90 function Resuspension(self, sv, bdata, time,dt)

• Deposition of the particle (if (tension > Globals%Constants%Critical_Shear_Erosion) then)

```
where ((dist2bottom < landIntThreshold) .and. Tension>
    Globals%Constants%Critical_Shear_Erosion)
!Tracer gets positive vertical velocity which corresponds
    to a percentage of the velocity modulus
!Resuspension(:,3) = Globals%Constants%ResuspensionCoeff
    * velocity_mod
!tracers gets brought up to 0.5m
Resuspension(:,3) = 0.5/dt
end where
```

Question: How does it show those suspended particles that move just above the seabed?

kernelVerticalMotion.f90 function Resuspension(self, sv, bdata, time,dt)

Question: How does it show those suspended particles that move just above the seabed?

- Find the U^* based on the log-law and later find the $\tau_{wall} = \rho U^{*2}$.
- Consider a threshold in rugosity scale (e.g. $10 \cdot z_0$).
- Lower than this threshold we Do not have a **Lagrangian kinematic** movement But if $\tau_{wall} > \tau_{cr}$ (resuspension condition) the particles move with the same velocity of the log-law.
- Buoyancy could affect on the particles which exist in this layer
- Resuspension Model can be replaced with a new model.

kernelVerticalMotion.f90 Resuspension: Deposition of the particles(Other option)

- Deposition: $M_{Dpos} = w_s \cdot C \cdot (1 \frac{\tau_{wall}}{\tau_{cr,Dpos}}), \quad \tau_{wall} < \tau_{cr,Dpos}$
 - M_{Dpos} : flux rate of deposition (kg/m2/s)
 - w_s : settling velocity (m/s)
 - C: particle concentration (kg/m3)

This is for the Flux rate of deposition, and it can use in the advection-diffusion equation as the flux at the boundaries. The MOHIDLagrangian works with particles and number of them. Hence, how we do we can use it in MOHIDLagrangian?

- Deposited particles (kg) $= \frac{M_{Dpos} \cdot \Delta t \cdot A_{wall}}{C \cdot A_{wall} \cdot h}$
- $\bullet \ \ P_{Dpos} = \min\{1, \frac{\textit{w}_{\textit{s}} \cdot \Delta t}{\textit{h}} \cdot (1 \frac{\tau_{\textit{wall}}}{\tau_{\textit{cr}, Dpos}})\}$

kernelVerticalMotion.f90 Resuspension: Deposition of the particles(Other option)

•
$$P_{Dpos} = \min\{1, \frac{w_s \cdot \Delta t}{h} \cdot (1 - \frac{\tau_{wall}}{\tau_{cr,Dpos}})\}$$

- We can consider it as the portion of the deposited particles or probability of the deposition.
- The easiest way is to assume it as the probability of deposition of the particles, and by a random number, *Rand*, in the interval of [0,1]:
- if $z_p < h$ and $\tau_{wall} < \tau_{cr,Dpos}$ if $Rand < P_{Dpos}$ then The particle deposits if $Rand > P_{Dpos}$ then particle moves with the flow
- This method does not guaranty that the exact number of particle deposit.

kernelVerticalMotion.f90

Resuspension: Erosion of the particles(Other option)

Erosion flux rate (kg/m2/s):

$$M_{ extit{Ero}} = M_0 \left(rac{ au_{ extit{wall}}}{ au_{ extit{cr,Ero}}} - 1
ight), \quad au_{ extit{wall}} > au_{ extit{cr,Ero}}$$

• Fraction of eroded mass:

$$\frac{M_{Ero} \cdot \Delta t \cdot A_{wall}}{\rho_s \cdot A_{wall} \cdot h}$$

• Erosion probability:

$$P_{\textit{Ero}} = \min \left\{ 1, rac{\textit{M}_0 \cdot \Delta t}{
ho_p \cdot h} \cdot \left(rac{ au_{\textit{wall}}}{ au_{\textit{cr,Ero}}} - 1
ight) \quad \textit{or} \quad lpha \cdot \left(rac{ au_{\textit{wall}}}{ au_{\textit{cr,Ero}}} - 1
ight)
ight\}$$

- It is assumed that all particles are distributed uniformly. Otherwise, a tuning parameter α could be used.
- If $z_p < h$ and $au_{wall} > au_{cr,Ero}$
 - If $Rand < P_{Ero}$ then particle is eroded (released)
 - If $Rand > P_{Ero}$ then particle stays on bed

Outlook

Add a new model for windage ²

$$U = \frac{U_{c} + U_{w} \sqrt{\frac{\rho_{air}}{\rho_{water}} \frac{S_{above}}{S_{below}}}}{1 + \sqrt{\frac{\rho_{air}}{\rho_{water}} \frac{S_{above}}{S_{below}}}} V = \frac{V_{c} + V_{w} \sqrt{\frac{\rho_{air}}{\rho_{water}} \frac{S_{above}}{S_{below}}}}{1 + \sqrt{\frac{\rho_{air}}{\rho_{water}} \frac{S_{above}}{S_{below}}}}$$

Add a new model for biofouling ²

Spheres:

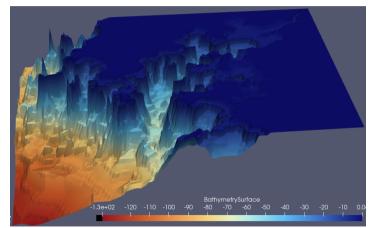
$$\rho_p = \rho_0 \frac{R_0^3}{(R_0 + BT)^3} + \rho_D \left[1 - \frac{R_0^3}{(R_0 + BT)^3} \right],$$

• Consider the variation of the particle radius which can effect on the buoyancy and biofouling.

² Jalón-Rojas, I., Wang, X. H., & Fredj, E. (2019). A 3D numerical model to Track Marine Plastic Debris (TrackMPD): Sensitivity of microplastic trajectories and fates to particle dynamical properties and physical processes. Marine pollution bulletin, 141, 256-272.

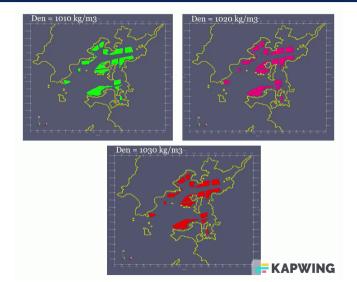
Simulation Ría de Arousa

- Comparison of three different densities by using a new model for bouyancy term (setteling velocity).
 - Horizental view
 - Vertical view
- Comparison of the old and new buoyancy models for the density= 1030 kg/m3.

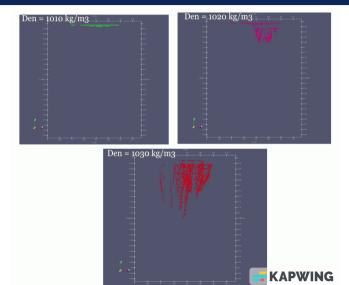


Simulation: New models

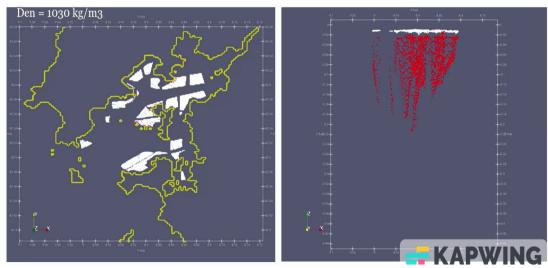
Ría de Arousa: Comparison of different densities (Horizontal view)



Simulation: New models Ría de Arousa: Comparison of different densities (Vertical view)



Simulation
Ría de Arousa: Comparison of the old and new models



Thank you for your attention