New parameterizations in the MOHIDLagrangian model

Mohsen Shabani

Universidad de Santiago de Compostela

June 24, 2025

1/31

IIiiiIIE!IIIi!%!lIII

1. General information

2. Lagrangian Kinematic
3. Diffusion Mixing Length
4. Buoyancy

5. Resuspension

6. Outlook

7. Simulation

2/31

General information

ATy ATy
\h—_/ \\—’/
Python code

HDF5 E—) NetCDF4
v \;//

Figure: A Python code to convert HDFb5 file to NetCDF4 format.

3/31

General information

Base Paper Plastic Coliform Seed Detritus

LagrangianKinematic My My My My My My
StokesDrift My My Mv Mv My Mv’
Windage My My My

DiffusionMixingLength Mv My My My My My
Aging My My My My Mv’ My
DegradationLinear Lv Lv

Buoyancy Vv Vv Vv Vv
Resuspension Vv A\ Vv Vv
BioFouling Lv

Mortality T90 Cv

Dilution Cv

Degradation Dv

431

kernel.f90
Lagrangian Kinematic (self , sv, bdata , time)

Zp—7
distanc2botttomp = —1 + 2P “bath

dwzp
dwz{
distanc2botttom = 0.0

veenendistanc2botttom = —0.98
distanc2botttom = —1.0

u* z Tw
U(z) =—In|—], ur —
k Zg

5/31

kernel.f90

Lagrangian Kinematic (self , sv , bdata , time)

— k U(Zdwz) k |n(;0)

u* = U(Z) = U(Zdwz) (Zd) P
In(=2£

In(2oz

2y 20
In(<)
n(Z

20 , 20<z<Zy,, and U:[u,v,w]

= U(z) = U(Zaus)
’ In(22z)

20

In MOHIDLagrangian:

where (dist2bottom < threshold_bot_wat)
aux_r8 = max((svistate(:,col_dwz)/2) ,Hmin_Chezy) /
Globals’Constants%Rugosity
chezyZ = (VonKarman / dlog(aux_r8)) **2
sv/state(:,4) = var_hor_dt(:,col_u) * chezyZ
svhstate(:,5) = var_hor_dt(:,col_v) * chezyZ
end where

6/31

kernel.f90

Lagrangian Kinematic (self , sv, bdata , time)

\ 4 ! ® The last measurement which is corresponed
| to last dwz, is variable (i.e., 2.0 to 0.1
Zp—Z
| distanc2botttomp = —1 + ﬁ meters).
P
dwz{ ® Hence, the threshold could be defined in the
I distancZbotttom = 0.0 rugosity (zp) scale (e.g. 10 - zp).
....... distanc2batttom = —0.98 ® threshold_bot_wat 0.5, while we can
distanc2botttom = —1.0 . .
define it as 0 (the last measurement).
U(Z)zfln(i) yr— |w® function LagrangianVelModification
k z0)’ P

is created to modify the velocities.

7/31

kernel.f90

DiffusionMixingLength (self , sv, bdata , time , dt)

® Random velocity for direction (random walk) i = {x, y, z}

- Dj
viand — (2r; — 1) dt where r; ~ U(0,1)

1 [oa-Di- v

rand i i

= 2r — 1 =l
dtvl (fi) dt dt

e Turbulent diffusion coefficient unit,D;, is [m2s~1].

where r; ~ U(0,1)

8/31

kernel.f90

DiffusionMixingLength (self , sv, bdata , time , dt)

® if svystate(:,10) > 2. svyresolution and sv)landIntMask < landVal

DiffusionMixingLength(:,7) = — vend g =1
. . R d rand
DiffusionMixinglength(:,8) = p -V ,a=1
d
DiffusionMixingLength(:,9) = avg””d ,a=107°

DiffusionMixingLength(:,10) = 0.0

DiffusionMixingLength(:,i) i=7,8,9 are corresponded to the derivative of
diffusion velocity in the directions of x, y, z. Also, DiffusionMixinglLength(:,10)
represents the derivative of diffusion mixing length.

9/31

kernel.f90

DiffusionMixingLength (self , sv, bdata , time , dt)

Then, the new position will be modified based on the velocities calculated above.
d rand
dx = m2geo(—vx ,lon) - dt
dy = m2geo(ra”d ,lat) - dt
d
dz = —vd . dt
dt
DiffusionMixinglength(:,1) = UtilsYm2geo(DiffusionMixinglength(:,7), svistate(:,2), .false.)*dt
DiffusionMixinglength(:,2) = Utils/m2geo(DiffusionMixinglength(:,8), svistate(:,2), .true.)*dt
DiffusionMixinglength(:,3) = DiffusionMixingLength(:,9)*dt

The kernel operates on the time derivative. Since x = vt, taking the derivative with
respect to time yields the velocity v. Therefore, to correctly update positions, the

corresponding velocity must be included in the kernel. 'a”d -dt = vranOI
10/31

kernel.f90

DiffusionMixingLength (self , sv, bdata , time , dt)

d g 1
—vyRnd — (2, — 1) —
dtv’ (2r)dt

® Why is it multiplied by v;?

where r; ~ U(0,1)

® One possible limitation of the random walk model arises in regions where the velocity
vj is zero or nearly zero. By multiplying by v;, we ensure that the random walk
component becomes zero and is effectively excluded from the calculation.

® Since multiplying by v; introduces a unit inconsistency. It may be more appropriate
to use a binary (dimensionless) switch to activate or deactivate the random walk
term in such regions.

11/31

kernelVerticalMotion.f90

Buoyancy(self, sv, bdata, time)

® Modification of z position regarding the buoyancy term in MOHIDLagrangian

. S : .
Buoyancy(: ,3) — sign, - 4/ —2g - o R,, if Re # 0 and dist2bottom > threshold

0, otherwise

® While S in MOHIDLagrangian called as shape factor,

(% Vreal)
(%Areal)

Please note that Buoyancy(:,3) should be in the unit of velocity [m/s].

NI=| Wi

[1]

SMOHIDLagrangian =

12/31

kernelVerticalMotion.f90

Buoyancy(self, sv, bdata, time)

® Let's do a unit check in the mentioned formula in MOHIDLagrangian,

Buoyancy(:,3) = sign.[1]- \/_2g[$ g[il]] Relll

0,

[t m
Buoyancy(: ’3) — [] : [2] [1] [1] - [?]#[;]7
0,

In MOHIDLagrangian, we have unit inconsistency.

if Cond.

otherwise

if Cond.

otherwise

13/31

kernelVerticalMotion.f90

Buoyancy Calculation

Lets consider a particle with 3 forces, its weightFy, buoyancyFg, dragFp. Assume that
the positive direction is upward and buoyancy and drag force are in the positive direction.
Hence,

Fp+ Fg = Fw.
By replacing the forces and considering shape factor,®,

1
Epf CD,ref¢ACS,reaIV2 + pfgvreal - _ppgvrea/-

Now, by rearranging the above equation the velocity of particle will be:

Pp — Pf 1 Vreal 1 Vreal
v=,/-2 =4/-2g-R,- . m/s|.
\/ & pf)¢CD,ref ACS, real \/ g% OCp rer ACS,real [m/s]

14/31

kernelVerticalMotion.f90

Buoyancy Calculation

On the other side, the shape factor can be defined as?.

Actual surface area of particle

~ Surface area of the sphere of same volume

where
sphericity, v , is the inverse of the shape factor.

® & = 1 is the reference case and corresponds to a sphere.

e & > 1is corresponded to a Prolate spheroid (elongated).

® ® < 1is corresponded to an Oblate spheroid (flattened).

e ® >> 1 is corresponded to a Flat plate.
3
4

!Please pay attention that we have different methods to consider shape factor, but at the end it should
be dimensionless

4 p—
3
Vieal = gﬂ—rshpere = I'shpere = (Vreal)3

15/31

kernelVerticalMotion.f90

Buoyancy Calculation

Actual surface area of particle
Surface area of the sphere of same volume

Hence,

_ Area/ _ Areal _ Area/
47T(rrea/)2 3 g 77%(6 Vreal)%
477(E Vreal) 3

16/31

kernelVerticalMotion.f90

Buoyancy Calculation

® In the previous formula, Cp is a function of the Reynolds number.

® Reynolds number has to calculate in the relative velocity (wye = [wp — wr|).
Hence, this form of formula needs an iterative method.

e MOHIDLagrangian uses explicit solver and using iterative method to calculate each
settling velocity particle in each time step is not cost-effective.

® [n MOHIDLagrangian,

MeanKvisco = 1073 = 1079 (kVisco = GlobalsYConstants%MeanKvisco)

fDensity = seaWaterDensity(svistate(:,col_sal), svistate(:,col_temp),svistate(:,3))
kVisco = absoluteSeaWaterViscosity(svYstate(:,col_sal), svistate(:,col_temp)) /fDensity
reynoldsNumber = selfYReynolds(sv/state(:,6), kvisco, svistate(:,rIdx)*2)

17/31

kernelVerticalMotion.f90

Buoyancy Calculation

® Other options to calculate settling velocity

Review of formulations for terminal settling/rising velocities of plastics used in the reviewed numerical studies;
Ap = Em o = 53.5exp(—0.657), ¢

Pic

= 5.65exp(=2.57), ¢; = 0.7+0.9%.

Reference Expression Particle shape
gdpD;) .
Lamb (1924) w,=— 5 =, Py > Py (C.4) Spherical particles
Vi
. gD} Ap . .)
Elliott (1986) w, = —ﬁ, Py < Py (C.5) Spherical particles with D, < D,
VK.
12
Elliott (1986) w, = (—gg.[)”d.p) . Py < Pw (C.6) Spherical particles with D, > D,
<5
Wu and Wang (2006) w,=— L";‘ % Pp> Py (C.7) Sediment particles
S
Zhiyao et al. (2008) w, = =7 DY (381 4093D7) T p >, (C.8) Sediment particles
2 ache: - __xgdp D, Lo L 3
Khatmullina and Isachenko (2017) w, = v, 553381, + 12691 Pp > P (C.9 Cylindrical plastics
—pOTTTp0TI0
Wang et al. (2021) w, = —1.0434(Apg)" 1 Pp > Pu (C.10) Irregularly shaped plastics

Y0124
w

18/31

kernelVerticalMotion.f90

Resuspension(self, sv, bdata, time,dt)

® Resuspension model in MOHIDLagrangian (if (dist2bottom(i) < landIntThreshold) then)

If data of the sea surface significant wave height and the sea surface
wave mean period exist

Yes | No
Compute rugosity Calculate Calculate
(Ripple , Mega-Ripple , Dune) tension tension

{

Case 1: Wave-Only flow

Case 2: Combined Wave-Current flow - 2
2 & T =p,U
T= Epwcd,maxU T = pwCamaxlU

—_— [If T>7T iica]—»[Reposition of the particels]

19/31

kernelVerticalMotion.f90

Resuspension(self, sv, bdata, time,dt)

® |f sea surface wave data exists:

!Average velocity
U = sqrt(svistate(i,4)**2.0 + svistate(i,5)**x2.0)/
0.4% (dlog(bat/z0(i)) - 1.0 + z0(i)/bat)

Recall the velocity based on log-law, where z is calculated from the seabed.

U* z
U(Z) = 7 In (;0)7 z=2 — Zpath

Hence, the average velocity along this layer will be:

_ H * H
U:/ U(Z)dZZU{ln()—H-ZO}, H = Zijwz — Zpath-
; k H

20

20/31

kernelVerticalMotion.f90

Resuspension(self, sv, bdata, time,dt)

® Deposition of the particle (if (tension > Globals%Constants)Critical_Shear Erosion) then)

where ((dist2bottom < landIntThreshold) .and. Tension>
Globals/Constants%Critical_Shear_Erosion)

!Tracer gets positive vertical velocity which corresponds
to a percentage of the velocity modulus

!Resuspension(:,3) = Globals’%Constants%ResuspensionCoeff
* velocity_mod

!tracers gets brought up to 0.5m

Resuspension(:,3) = 0.5/dt

end where

Question: How does it show those suspended particles that move just above the
seabed?

21/31

kernelVerticalMotion.f90

Resuspension(self, sv, bdata, time,dt)

Question: How does it show those suspended particles that move just above the seabed?

Find the U* based on the log-law and later find the 7, = pU*2.
Consider a threshold in rugosity scale (e.g. 10 - z).

Lower than this threshold we Do not have a Lagrangian kinematic movement But
if Twait > Ter (resuspension condition) the particles move with the same velocity of
the log-law.

Buoyancy could affect on the particles which exist in this layer

Resuspension Model can be replaced with a new model.

22/31

kernelVerticalMotion.f90

Resuspension: Deposition of the particles(Other option)

. T
® Deposition: Mppes = ws - C - (1 — Wia”),
Tcr,Dpos
® Mppos : flux rate of deposition (kg/m2/s)
® w;: settling velocity (m/s)
® (: particle concentration (kg/m3)

Twall < Tcr,Dpos

This is for the Flux rate of deposition, and it can use in the advection-diffusion equation as the flux at the

boundaries. The MOHIDLagrangian works with particles and number of them. Hence, how we do we can use
it in MOHIDLagrangian?

Deposited particles (kg) Mppos - At - Aanl

Total mass (kg) N C-A-h
h Ter,Dpos

® Pppos = min{1,

23/31

kernelVerticalMotion.f90

Resuspension: Deposition of the particles(Other option)

. ws - At Twall
® Pppos = min{l, ——— - (1 — p—)}
cr,Dpos
® We can consider it as the portion of the deposited particles or probability of the

deposition.

® The easiest way is to assume it as the probability of deposition of the particles, and
by a random number, Rand, in the interval of [0,1]:

® if z, < hand Ty < Ter,Dpos
if Rand < Pppos then The particle deposits
if Rand > Pppos then particle moves with the flow

® This method does not guaranty that the exact number of particle deposit.

24 /31

kernelVerticalMotion.f90

Resuspension: Erosion of the particles(Other option)
® Erosion flux rate (kg/m2/s):

Twall
Mg, = My (- 1) » Twall > Ter,Ero

Ter,Ero

® Fraction of eroded mass:
MEro <At - Awall

Ps Awall ~h

® Erosion probability:

) My - At T, T,
Pgro = min {1, 0 . wall g or a-—2 _1
Pp - h Ter,Ero Ter,Ero
® |t is assumed that all particles are distributed uniformly. Otherwise, a tuning parameter
« could be used.
o |f Zp < h and 7, > Tcr,Ero

® |f Rand < Pg, then particle is eroded (released)
® |f Rand > Pk, then particle stays on bed

25/31

Outlook

® Add a new model for windage 2

- -
| _Pair _ Sabove | _Pair _ Sabove
U + Uy \| Prvater Shelow Vet Vo \ Puater Selow
i water
U= — V= —_——
1 | _Pair_ Sabove 1 |‘I Pair Sabove
\" Pyater Sbelow \l‘ Pwater Sbelow

e Add a new model for biofouling 2
Spheres:

- R—Uj+ 1,}'{—(f
PP_PO(RD+BT)3 Pp (Ry + BT |’

e Consider the variation of the particle radius which can effect on the buoyancy and
biofouling.
2JaIc’)n—Rojas, I., Wang, X. H., & Fredj, E. (2019). A 3D numerical model to Track Marine Plastic
Debris (TrackMPD): Sensitivity of microplastic trajectories and fates to particle dynamical properties and
physical processes. Marine pollution bulletin, 141, 256-272.

26 /31

Simulation
Ria de Arousa

® Comparison of three different
densities by using a new model
for bouyancy term (setteling
velocity).

® Horizental view
® Vertical view

® Comparison of the old and new
buoyancy models for
the density= 1030 kg/m3.

-1.3e+02

-120 -1
|

10 -
|

BathymetrySurface

100 90 80 70 40 50 40 -

U ——

Simulation: New models
Ria de Arousa: Comparison of different densities (Horizontal view)

Den :;117020' K -y

Ay 7]
) ol

= KAPWING

28/31

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

Simulation: New models
Ria de Arousa: Comparison of different densities (Vertical view)

Den =1020 kg/m3+ + + 4 |

Den = 1030 kg/m3 -

+» KAPWING 20/31

........

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

Simulation
Ria de Arousa: Comparison of the old and new models

Den = 1030 kg/m3

I
4‘
{
T
T
|
I
!
1
T
|
1l
+
|
+
+
+
1
it

. KAPWING

30/31

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

Thank you for your attention

	General information
	Lagrangian Kinematic
	Diffusion Mixing Length
	Buoyancy
	Resuspension
	Outlook
	Simulation

	fd@rm@2:
	fd@rm@1:
	fd@rm@0:

