

A hydrological-hydrodynamic model of the Tocantins-Araguaia watershed

Débora Pereira

Supervisors: Ramiro Neves, Marcelo Rollnic, Ana Oliveira

Contacts

Debora Pereira debora.pereira debora

General introduction

2º major Basin in Amazon Region7 major hydroelectric plants50% shows environmental alteration

Issues?

Pressure from deforestation, landcover changes, and the expansion of agriculture and pasture.

Land use changes has **impact on precipitation and evaporation** regime

The Tocantins-Araguaia watershed (TAW) is within the Amazonia and the Cerrado biomes

Section of my research

Coupling the models

Pará river estuary ~500 km

The precipitation is around: **2000 mm to 3000 mm/year**.

What are the hydrodynamic changes that happens when we add runoff, a volume of water, into the hydrological model?

Beyond hydrodynamic, will it impact the salinity plume? Or the residence time?

What changed?

- Simulated for 2 months
- Initial Rainy season
- Nothing really changed beyond small movement related to the mean water level

What changed? There is a slightly difference in velocities.

Salinity

Needs to simulate longer 1y 6m?

Tidal influence removed

Difference of 3000 m3.s-1

Discharge

Campanha	Transporte de Volume Resultante <tv> (m³/s)</tv>
Maio / 2011	74.391
Setembro / 2011	45.387
Junho / 2013	10.828

Future steps

- Run the simulations for a longer period
- Simulate the coupling in a 3D model, to evaluate impact in the baroclinic gradient
- Evaluate the residence time using Lagrangian model

Precipitation Evaluation

- 761 rain gauges
- Point-to-pixel and a Climatologial approach
- Statistical parameters: RMSE, NSE, R, R² and BIAS

Evaluation of precipitation products in a Brazilian watershed: Tocantins-Araguaia watershed case study

Débora R. Pereira^{1,2} • Ana R. Oliveira¹ • Maurício S. Costa² • Tiago B. Ramos ¹ • Marcelo Rollnic² • Ramiro J. J. Neves¹

Received: 5 January 2024 / Accepted: 25 June 2024 © The Author(s) 2024

Tide behavior in a hydrological model?

- Despite advances in including tidal dynamics in hydrological models, no one explored nor evaluated the tidal behavior in hydrological models
- 8 tidal stations
- Statistical parameters: RMSE, NSE, R² and BIAS
- By incorporating tidal dynamics, MOHID-Land provides a more comprehensive understanding of the intricate interactions within estuarine and coastal systems

Simulation of Tidal Oscillations in the Pará River Estuary Using the MOHID-Land Hydrological Model

by Débora R. Pereira ^{1,*} ⊠ ^⑤, Ana R. Oliveira ¹ ⊠ ^⑥, Mauricio S. Costa ² ⊠ ^⑥, Marcelo Rollnic ² ⊠ ^⑥ and Ramiro Neves ¹ ⊠ ^⑥

- 1 Centro de Ciência e Tecnologia do Ambiente e do Mar (MARETEC-LARSyS), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
- ² Laboratório de Pesquisa em Monitoramento Ambiental Marinho (LAPMAR), Universidade Federal do Pará, R. Augusto Corrêa, 01, Belem 66075-110, Brazil
- * Author to whom correspondence should be addressed.

Water 2025, 17(7), 1048; https://doi.org/10.3390/w17071048

17 - 18 june 2025 Débora Pereira

Beyond the articles

A influência do solo e da vegetação na modelação hidrológica de uma sub-bacia do Rio Araguaia no Cerrado Brasileiro

🚨 Debora R. Pereira 🚨 Ana R. Oliveira 🚨 Tiago B. Ramos 🚨 Marcelo Rollnic 🚨 Ramiro Neves

Publicado em: Revista de Ciências Agrárias, 2024

Assessing The Capability Of A Hydrological Model For Simulating Macrotidal Elevations In Assessing The Capability Of A Hydrological Model For Simulating Macrotidal Elevations In

▲ Debora R. Pereira 💄 Ana R. Oliveira 💄 Marcelo Rollnic 💄 Ramiro Neves

Conferência: AGU 2023

Evaluation of precipitation products in a Brazilian watershed: Tocantins-Araguaia watershed

🚨 Debora R. Pereira 🚨 Ana R. Oliveira 🚨 Mauricio S. Costa 🚨 Tiago B. Ramos 🚨 Marcelo Rollnic 🚨 Ramiro Neves

Conferência: SPMAC2024

Thank you!

Contacts

Debora Pereira debora.pereira@tecnico.ulisboa.pt