

CONTENTS

- . OVERVIEW
- II. STUDY AREA
- III. COUPLING METHODOLOGY
- IV. PERFORMANCE TESTS
- V. LISOCEAN WAVES OPERATIONAL MODEL

VII. FINAL REMARKS

VIII. NEXT STEPS

OVERVIEW

Upgrade the coastal dimension of CMEMS to achieve a seamless monitoring and forecasting of the ocean from global to regional and coastal scales, by applying and improving state-of-the-art methods and through the development of new coastal products to better serve coastal users and Member States.

STUDY AREA

COUPLING METHODOLOGY

CIRCULATION MODEL

- Water Level
- \circ Velocity

WAVE MODEL

- Significant Wave Height
- Mean Wave direction
- Wave lenght
- Mean Wave Period
- Orbital velocity
- Radiation Stress

COUPLING METHODOLOGY

LISOCEAN MODEL

- √ 3D Hydrodynamic model
- √ 280 m spatial resolution
- ✓ Operational (3 days forecast)
- ✓ Hourly outputs (WL, T, S, velocity components)

http://pipeline-dito-platform.colabatlantic.com/

COUPLING METHODOLOGY

LISOCEAN MODEL

Astronomical tide (FES) General circulation (CMEMS)

3D high-resolution bathymetry (EMODNet, IH)

Atmospheric inputs (AROME, GFS)

River flow

OPERATIONAL COUPLING METHODOLOGY

Automatic Running Tool (**ART**) Tools based on PYTHON

PRE-PROCESSING

- ✓ Copy restart files
- ✓ Copy and conversion of WL and velocities files
- ✓ Modify SWAN input file
- ✓ Run SWAN

POST-PROCESSING

- ✓ Convert to HDF
- ✓ Copy outputs to results folder

PERFORMANCE TESTS

- ✓ Using diferent boundary conditions
- ✓ Coupling including only water level
- ✓ Coupling including water level and velocities
- ✓ Restart/No restart
- ✓ Wind/ no wind (ongoing)
- ✓ Testing diferent number of cores

LISOCEAN WAVES OPERATIONAL MODEL

CMEMS IBI WAVES

15 min temporal resolution data (WL and velocities) from MOHID LISOCEAN

3D one-way coupled wave model

280 m spatial resolution

Operational (3 days forecast)

Hourly outputs (Hs, Dir, Tm, L, Ubot, SXX, SXY, SYY)

HDF format outputs

Running since 01/01/2025 – Up to date

RESULTS AND DISCUSSION

RESULTS AND DISCUSSION

	Water Level	WL + Velocities
RMSE	0.18	0.14
r ²	0.82	0.96

FINAL REMARKS

- ✓ The proposed methodology has proven effective for improving wave forecasting in coastal areas.
- ✓ The model reproduces observed wave heights behavior, capturing the main variability patterns.
- ✓ Coupling with hydrodynamic fields (water level and currents) leads to a **reduction in bias** and slight improvements in statistical indicators (RMSE and R²).

- ✓ A consistent improvement is observed even over a short simulation period.
- ✓ These results highlight the value of model coupling for enhancing forecast accuracy in complex coastal environments.

NEXT STEPS/FUTURE WORK

- ✓ Include wind in the operational waves simulation
- ✓ Use wave spectra from WW3 as wave forcing
- ✓ Enhance two-way coupling between MOHID and SWAN, and integrate it into the operational system:

