

A verification and validation exercise with MOHID Water

Manuel Rentschler

Supervisors: Guilherme Vaz (blueOASIS), Luís Eça (IST)

MOHIDing 2025, June 25-27, Lisbon

MARKETS

Creating Positive Impact in...

Renewable Energy

Ocean Conservation

Maritime Design

Naval Innovation

CAPABILITIES

With integrated technical expertise on...

Maritime & Renewables

Digital Twins

Underwater Acoustics

LOCATIONS

And operations in...

EriceiraPortugal

LeiriaPortugal

AzoresPortugal

Utrecht Nederlands

Verification & Validation

How good are my simulation results?

Verification & Validation

- How good are my simulation results?
 - How well is my numerical model representing reality? → Validation
 → e.g. Comparison with experiments
 - How reliable are the numerical results? → Verification
 - Code verification: Check if code is bug-free and working as intended
 - Solution verification: Estimate numerical uncertainty

Verification & Validation

- How good are my simulation results?
 - How well is my numerical model representing reality? → Validation
 → e.g. Comparison with experiments
 - How reliable are the numerical results? → Verification
 - Code verification: Check if code is bug-free and working as intended
 - Solution verification: Estimate numerical uncertainty

- Numerical uncertainty is calculated from numerical error, considering safety factor and scatter in data
 - Updated 2023 procedure (Rentschler et al., 2025)
 - Free Verification Tools (https://www.marin.nl/en/research/free-resources/verification-and-validation/verification-tools)
 - Python pre- & postprocessing script (https://github.com/blueOceanSustainableSolutions/wrapyNUA)
- Round-off error and iterative error are neglected, only relevant contribution from discretization error
 - Estimated from grid (and time) refinement study
 - Fit simulation data to extrapolate solution for infinitesimal fine grid

"HEY, I DID A REGRESSION."

"I WANTED A CURVED LINE, 50 I MADE ONE WITH MATH."

• Simulation data: Monotonic convergence vs. non-monotonic

• Least-squares fit: $\phi_i = \phi_0 + \alpha \cdot r^p$ with $0.5 \le p \le 2.05$

• Similar fit with p = 2

• Similar ϕ_0

- Discretization error: Difference between fit and extrapolated solution
 - Similar discretization errors in the two examples!

Scattered data on the right graph

- Numerical uncertainty
 - Scatter is penalized!

Tagus estuary model

- Baroclinic 3D model, 21 layers
- FES2014 tide, river discharges,
 WRF meteo, GOTM turbulence
- Single domain
 - Base resolution ~200m
 - 11-22m bathymetry in channel/mouth from EMODnet

How reliable are simulated current velocities?

Grid refinement study

- 5 discretizations: 200...40m (3...75e+06 cells)
- 3 potential locations for tidal turbines (Hoofd et al., 2023)

Grid refinement study

- Velocity modulus time series at L1, L2, L3
 - Not monotonically converging!

Numercial uncertainty analysis

• 4 tests per location → 12 samples

Large uncertainties for coarsest model, still significant uncertainties for finer

resolutions

 Largest uncertainties at L2 (closest to land...)

Numercial uncertainty analysis

• Large data range, non-monotonic behavior, scatter

0.36

→ very conservative uncertainty estimates

0.2

Relative grid step size

Fit p=1

0.084 T

0.099

0.13

1.0

0.5

0.4

0.35

 $\Delta x = 200 \text{m}$

[s/m] 0.30 0.25

o.20 o.15

Uncertainty of 0.10

Experimental campaign

- Self-built, low-cost GPS drifters (Hoofd et al., 2023)
- Large experimental uncertainty ~0.3m/s

Validation

Drifter averages and stdevs vs. linearly interpolated simulation results

Validation

Outlier due to flow acceleration near 25 de Abril bridge? Not modelled...

Conclusions

• Finer discretizations achieve uncertainty estimates well below 0.1m/s

 Despite larger uncertainties, the coarsest model performs respectably well with suitable post-processing methodology (interpolation!)

 Non-monotonic convergence behavior and scatter render uncertainty analysis overly conservative

Future work

- What is the source of the non-monotonic behavior and scatter?
 - High-resolution bathymetry and geometry? Rather not...
 - Non-linearities from numerical schemes, turbulence, filters, ...?
- Azores nested model
 - Use in EU projects
 - Coupling with SWAN, REEF3D, ...
 - Digital Twin
- Higher quality experimental data
 - Spotter/Hydrotwin buoy with water level and current sensors (https://www.sofarocean.com/products/spotter, https://hydrotwin.pt/)

Extra: MOHID perfomance

Strong scaling study on Deucalion HPC cluster (Intel based) with MPI

Extra: MOHID performance

Influence of different domain decompositions

Lon [°]

Extra: MOHID performance

Acknowledgment & References

- The authors thank Ramiro Neves and Lígia Pinto from MARETEC research group for supplying a base model of the Tagus estuary and their availability for technical discussions about MOHID
- The authors acknowledge the use of the EuroHPC Deucalion High Performance Computing infrastructure (https://rnca.fccn.pt/en/deucalion/)
- The first author is funded by FCT Fundação para a Ciência e Tecnologia, I.P., under the scope of the PhD studentship with the reference 2021.04948.BD (https://doi.org/10.54499/2021.04948.BD)

- M. Rentschler, L. Eça, and G. Vaz (2025), "A solution verification exercise for a practical application of a coastal hydrodynamics model", ASME Digital Collection, College Station, Texas, USA
- B. Hoofd, T. Gomes, L. Pinto, G. Vay, R. Neves, A. Botelho, and C. Freitas (2023), "Validation of the energz resource assessment with experimental data for the site selection of a tidal turbine in the Tagus River estuary", EWTEC Proceedings, vol. 15