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4.1 Introduction

The hydrodynamical model used is the MESH 3D model (modelo euleriano de simulação hidrodinâmica 3D), developped by the investigation group of Prof. Ramiro Neves (Martins et al, 1998). This model is based on past experience, with 2D finite-difference models (MOHID) and 3D finite difference models with a sigma-coordinate (TRID), developped by the same group.

It is a fully three dimensional, primitive equation model, based on the Navier-Stokes equations with Boussinesq and hydrostatic approximations. The MESH 3D is formulated in a finite volume approach with a vertical sigma-coordinate to allow a good simulation of topographic effects. The semi-implicit temporal discretisation of ADI (Alternating Direction Implicit) type using a staggered grid, permits to avoid stability problems occuring in explicit methods and obtains an easy resolution by tridiagonal matrixes in the free surface elevation and horizontal velocities calculation. The horizontal transport and the Coriolis term are solved explicitly, while the model uses an implicit algorithm for the pressure terms and for the vertical transport. The horizontal viscosity calculation is based on Kolmogorov’s law. The computation of the vertical viscosity is based on a mixing length approach. Tidal forcing is prescribed at the marine boundary, whereas the flow rate is imposed at the river boundary.

4.2 General Equations

The momentum and continuity equations (shallow water approach) in Cartesian coordinates are: 
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where t is time, u, v, w are the velocity components in the x, y, z directions, f is the Coriolis parameter, p is pressure, ( is the water density, g is the acceleration of gravity, and (H  and (V are the horizontal and vertical turbulent viscosities. 

The equations above are solved with a finite volume algorithm. They are integrated in the cell volume and the divergence theorem is used to convert volume integrals in fluxes trough the faces. The resulting equations are time-integrated to obtain the time discretization. The equations obtained in this process are balance equations stating the conservation of a property in the form:
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This statement is independent of the coordinate system used and can be applied to any mesh. Since a moving grid is used, the time variation term must include the volume variation of the cell. The fluxes through the faces are of advective and diffusive type. The cells used are of the form: 


[image: image6.png]
Figure 5. Cell type used in the model, adapted from Martins (1997).

This cell is used to define density, temperature, salinity and horizontal viscosity. The U, V and W cells are staggered in relation with this cell and the cell used to define the vertical viscosity of layer k coincides with the W velocity cell of layer k+1. The vertices of this cell are allowed to move in the vertical direction since a sigma coordinate is used.
4.3  Shear stress and viscosity terms

Since the main accent lies on the transport capacity of the fluid motions, viscosity terms, especially vertical viscosity, generated through bottom shear (surface stress is imposed zero) will be discussed in more detail. The bottom shear stress is calculated as a quadratic function of the velocity and of a friction coefficient. In this model it is calculated as:
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where VH is the horizontal velocity and CF a shear coefficient, calculated for a logarithmic velocity profile from the bottom until the point where VH is calculated (the second layer). In the logarithmic layer, the following equations are valid for the vertical turbulent viscosity and for the horizontal velocity :
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Where ( = 0.4 is the Von Karman constant, z the distance from the bottom, z0 = 0.0025 m the characteristic roughness and 
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the shear velocity. 

Considering the definition of shear velocity 
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, we obtain
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When the depth becomes very small, the equation gives very high values of CF. To overcome this problem, bottom shear stress is imposed zero if the water depth is less than 20 cm.

The vertical eddy diffusion coefficient is calculated using a the turbulent closure scheme of algebraic type. The model used (Nihoul, 1982) is of the mixing length type with stratification and surface corrections:
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with 
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Where H is the total depth, and Ri is the Richardson number quantifying stratification. 

Horizontal diffusion is calculated by: 
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Where H is the total depth, Vvis,ref  = 1 m/s and Hvis,ref  = 10 m are the reference horizontal velocity and reference depth for viscosity correction. This correction is dimensionally consistent and is related with the increase in turbulent mixing with velocity and depth.

4.4 Open Boundary Conditions

For the hydrodynamics open boundary conditions are usually imposed in terms of water fluxes or in terms of free surface elevation. The first type is generally considered at river boudaries, the second one at ocean boundaries. In the present model the river flow rate is imposed with values varying according to the conditions to be simulated. At the ocean boundary, tidal forcing with tidal constituents from the tidal gauge in Cascais is prescribed, considering a phase difference of the incoming wave to account for the distance between the boundaries of the grid and Cascais. The free surface at the boundaries may however be modified by the interior solution. Dificulties arise because the celerity of free surface elevation perturbations is different then the fluid velocity. To overcome this problem a radiation condition is considered at the ocean boundary. The objective of this condition is the recalculation of the free surface elevation in terms of the waves produced in the interior of the domain. 

4.5 The vertical sigma-coordinate

The transformation of the equations to the sigma coordinate (Beckers, 1991 ; Deleersnijder, 1989) permits a better resolution in a domain with an important topographic variation, and equations are solved in a transformed rectangular domain. The transformation can be written as (Nihoul et al, 1986): 
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where H = h + (  is the total depth of the water column, h the local depth (positive if the bottom lays below the reference sea level), (  the elevation of water surface, z the vertical Cartesian coordinate (positive above the reference sea level) and L a characteristic length scale (here taken as 1). In this way, x3 = L = 1 is the free surface, x3 = 0 the bottom, and intermediate iso- x3 lines will follow bottom topography near the bottom and the free surface elevation near the surface since the abbove formula can be seen as a linear interpolation between bottom and surface. Some advantages of the sigma co-ordinate can be clearly identified from the figure below: shallow regions are better discretised in the sigma plane and the calculation of the bottom shear stress, a major task in a sediment transport model, is more accurate in the sigma model. To achieve the same vertical resolution in shallow areas more layers are needed in the Cartesian grid.
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Figure 6.   Vertical discretisation in the real (left), and in the calculation domain (right). In the 

upper figure cartesian coordinates are used, in the figure below the sigma coordinate,   adapted from Cancino and Neves (1994a).

4.6 Numerical scheme

The model uses an ADI time-splitting method (Abbot, 1989). This type of methods permits to separate the calculation of different processes. To calculate the time evolution of a certain property, one or more intermediate time steps are considered in each time step. The property values at the beginning of the time step are modified by one or more processes (e.g. advection/diffusion) and the new values for the property are calculated. Other processes present in the equation are then calculated using the new values of the property instead of those at the beginning of the time step. These methods are more stable then explicit methods and  avoids the inversion of matrixes of higher rank. The flow charts given in the next section, and the appendix illustrate the method used. 

Basically, the system of equations is solved first by implicitely solving the momentum equations (barotropic and vertical diffusion terms being solved implicitely). These equation are then summed vertically over all layers to obtain the depth integrated velocities 
[image: image17.wmf]U

 and 
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, which are substituted in the vertically integrated continuity equation, to yield the prognostic free surface elevation :
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With the prognostic surface elevation, momentum equations are now solved explicitely, except for the vertical diffusion term, and final horizontal velocities are obtained. Finally, calculation of the vertical velocity and the movement of the mesh (vertical geometry redifinition) are calculated together since they are linked. The calculation scheme, in each time step, can be summarized as follows :
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The spatial discretisation uses the Arakawa C grid (Arakawa, 1966), where vectors (e.g. velocities) and scalars (e.g. free surface elevation) are calculated at different points. An ideal scheme for the discretisation of the advective terms should combine the transport property with little numerical diffusion. The upwind scheme satisfies the first requirement, but can have a large numerical diffusion. Central differences on the other hand, are less diffusive, but do not respect the transport property. In this model a hibrid scheme is used, with both methods given the same weight. Details of the main calculations performed by the model can be found in the appendix or in Martins (1997).

4.7 Program Structure
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The model can use two different temporal discretisations : the Abbot scheme (4 equations) and the Leendertse scheme (6 equations). The calling sequence of the hydrodynamic equations module for the 4 equations scheme (used in the present work) is : 
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The purpose of the main subroutines is given below:
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