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Abstract 

The uncertainty in the future in terms of climate and societal behaviour is expected to 

increase. Mathematical models can be an efficient management tools to prevent and to study 

the impacts of climate and societal scenarios in water resources. Therefore, the central aim of 

this thesis is to assess the impacts of future climate and societal scenarios on water quantity 

and quality under an integrated modelling approach. The MOHID modelling system, the 

Soil Water Assessment Tool (SWAT) and the CE-QUAL-W2 model were adopted for this 

purpose. 

First, it was investigated the effect of different watershed pressures scenarios including 

climate change in the hydrological regime and water bodies of the Sorraia River basin 

(Portugal). The SWAT model was used to simulate water flow and nutrient dynamics in the 

watershed while considering inputs from two climate models (GFDL-ESM2M and IPSL-

CMA-LR) and three societal storylines. The results were indicative of a possible future 

outcome and may provide guidelines for defining preventive measures to minimize the 

effect of climate change and growth of environmental pressures in the Sorraia River basin. 

Afterwards, an integrated modelling approach was followed to investigate water use 

vulnerability in the Montargil reservoir (in Portugal) under different climate change 

projections. The SWAT and the MOHID Water models were used to evaluate the impacts of 

two climate scenarios (GFDL-ESM2M and IPSL-CM5A-LR) on water availability in 

Montargil’s basin and reservoir during two decadal timelines (2030 and 2060). The impacts 

found indicate the importance of the managing systems in an integrative mode to prevent 

water resources reduction in the region. Subsequently, an integrated modelling approach 

was implemented to better understand the trophic status of the Montargil reservoir under 

climate change scenarios. The SWAT and CE-QUAL-W2 models were applied to the basin 

and reservoir, respectively, for simulating water and nutrient dynamics while considering 

the climatic scenario IPSL-CM5A-LR and two decadal timelines. The results showed that 

even considering measures that involve decreases in 30 to 35% of water use, the eutrophic 

state is not expected to improve. This raises issues related with fish survival and ecosystems 

stability, as also the objectives outlined by EU Water Framework Directive. 

Besides the primordial investigation carried out, during this thesis, some parallel work 

was developed. The SWAT model results were integrated with empirical modelling within a 

common framework, allowing relationships among different ecosystem states to be 

hierarchized, interpreted and predicted at multiple spatial and temporal scales. The 

simulations of hydrological and nutrient enrichment stressors and empirical modelling 

allowed to relate stressors with biotic indicators. Similarly, the SWAT model results were 
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used in empirical models in order to model the effect of multiple stressors on several 

biological indicators of the Sorraia river water quality and, subsequently, to model the 

ecological status. 

The outcomes of these test simulations confirm the potential of mathematical models 

to be considered as a valuable tool for engineering studies and water resources 

management, especially considering future changes scenarios. 

 

Keywords: Mathematical Models; River Basin Management; Water Resources; Future 

Scenarios; Climate Change. 
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Resumo 

No futuro é esperado que a incerteza no que diz respeito ao clima e comportamento 

social aumente. Os modelos matemáticos podem ser ferramentas eficientes de gestão para 

prevenir e estudar os impactes dos cenários climáticos e sociais nos recursos hídricos. Assim, 

o objetivo central desta tese é estudar os impactes de futuros cenários climáticos e sociais 

sobre a quantidade e a qualidade da água seguindo uma abordagem de modelação 

integrada. O sistema de modelação MOHID, o modelo SWAT (Soil and Water Assessment 

Tool) e o modelo CE-QUAL-W2 foram os modelos matemáticos adotados para esse fim. 

Primeiramente, investigou-se o efeito de diferentes cenários de pressões em bacias 

hidrográficas, incluindo mudanças climáticas no regime hidrológico e albufeira da bacia do 

rio Sorraia (Portugal). O modelo SWAT foi usado para simular o caudal e a dinâmica de 

nutrientes na bacia, considerando os dados de dois modelos climáticos (GFDL-ESM2M e 

IPSL-CMA-LR) e três linhas sociais. Os resultados foram indicativos de um possível 

resultado futuro e podem fornecer diretrizes para a definição de medidas preventivas para 

minimizar o efeito da mudança climática e o crescimento das pressões ambientais na bacia 

do rio Sorraia. Posteriormente, seguiu-se uma abordagem de modelação integrada para 

investigar a vulnerabilidade do uso da água na albufeira de Montargil (no Sorraia, em 

Portugal) sob diferentes projeções de mudanças climáticas. Os modelos SWAT e MOHID 

Water foram utilizados para avaliar os impactes de dois cenários climáticos (GFDL-ESM2M 

e IPSL-CM5A-LR) na disponibilidade de água na bacia e no reservatório de Montargil 

durante duas décadas (2024-2035 e 2054-2065). Os impactes encontrados indicam a 

importância dos sistemas de gestão de forma integrada para evitar a redução dos recursos 

hídricos na região. Posteriormente, foi implementada uma abordagem de modelação 

integrada para melhor entender o estado trófico da albufeira de Montargil sob cenários de 

mudanças climáticas. Os modelos SWAT e CE-QUAL-W2 foram aplicados na bacia e na 

albufeira, respectivamente, para simular a dinâmica de água e nutrientes, considerando o 

cenário climático IPSL-CM5A-LR e duas décadas temporais. Os resultados mostraram que, 

mesmo considerando medidas que envolvem reduções em 30 a 35% do uso de água, o 

estado trófico da albufeira mantém-se no nível eutrófico. Isto levanta questões relacionadas 
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com a sobrevivência dos peixes e a estabilidade dos ecossistemas, como também os objetivos 

delineados pela Diretiva-Quadro Água da UE. 

Além da investigação primordial realizada, durante esta tese, foram desenvolvidos 

alguns trabalhos paralelos. Os resultados do modelo SWAT foram integrados com a 

modelação empírica dentro de uma única estrutura, permitindo hierarquizar, interpretar e 

prever relações entre diferentes estados do ecossistema em múltiplas escalas espaciais e 

temporais. As simulações de stressors hidrológicos e de enriquecimento de nutrientes e 

modelação empírica permitiram relacionar stressors com indicadores bióticos. Da mesma 

forma, os resultados obtidos com o modelo SWAT foram utilizados em modelos empíricos 

para modelar o efeito de múltiplos stressors em vários indicadores biológicos da qualidade 

da água do rio Sorraia e, subsequentemente, para modelar o estado ecológico. 

Os resultados destas simulações de teste confirmam o potencial dos modelos 

matemáticos para serem considerados como uma ferramenta valiosa para estudos de 

engenharia e gestão dos recursos hídricos, principalmente em cenários de alterações futuras. 

Palavras-chave: Modelos Matemáticos; Gestão de Bacias Hidrográficas; Recursos Hídricos; 

Cenários Futuros; Alterações Climáticas. 
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Chapter 1 Introduction 

1.1 Research Goals 

Due to rapid population growth, the demand for natural resources and food has been 

growing. This increase has led to an expansion and intensification of agricultural activity in 

the last decades and resulted in a growing concern over the quality and quantity of water in 

rivers, aquifers and reservoirs. The urge to respond to environmental pressures, such as the 

ones driven by agriculture, is increasing through a more dynamic environmental activism 

and political impositions, stated in directives and other legal instruments.  

In 2000, the European Water Framework Directive (WFD - European Commission, 

2000) was published and become the core instrument of the European Union's water policy. 

The Water Framework Directive (WFD) established as a priority the protection and 

restoration of aquatic ecosystems and adopted a Drivers-Pressures-State-Impacts-Responses 

(DPSIR) framework (Voulvoulis et al., 2017; European Communities, 2003a), which aims to 

provide a systemic understanding of the relationship between environmental effects, their 

causes and measures taken (Nõges, 2002). This approach requires the development of River 

Basin Management Plans (RBMP) to achieve and guarantee the good status of all European 

water bodies, including ecosystems health, through the management of anthropogenic 

pressures (European Commission, 2000). Equally important, and included in the RBMPs, is 

the Programme of Measures (PoMs). The Programme of Measures is essential to comply 

with the legislation on water protection. After implementation of the initial defined PoMs, 

additional measures identified as necessary to meet the established environmental objectives 

may be necessary. 

Fifteen years after the publication of the WFD, its objectives remain a challenge as 47% 

of EU surface waters have not reached the good ecological status in 2015 – a central objective 

of EU water legislation (EEA, 2012 ; European Commission, 2012a). In Portugal only 52% 

comply with the "good status" goal, according to the diagnosis of the National Water Plan 

(APA, 2015). According to Backes and van Rijswick (2015) the first WFD cycle, from 2009 to 

2015, the number of surface water bodies in “good” state only increased by 10%.  

Although the WFD is the core of Europe’s water policy, it is complemented by several 

other directives with more specific goals: the Directive 91/271/EEC concerning urban waste 

water treatment, which aims to protect the environment from the effects of urban waste 

water discharges and discharges from some industrial sectors; the Nitrate Directive 
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91/676/EEC which aims to protect water quality by preventing nitrates from agricultural 

sources  and promoting good farming practices; the Marine Strategy Framework Directive 

2008/56/EC, which establishes a framework for community action in the field of marine 

environmental policy; the Habitats Directive 92/43/EEC, which aims to ensure the 

conservation of a wide range of rare, threatened or endemic animal and plant species; and 

the Floods Directive 2007/60/EC, which aims to reduce and manage the risks floods, 

specially concerning to human health, the environment, cultural heritage and economic 

activity. The Blueprint to Safeguard Europe’s Water Resources aims at better 

implementation of existing legislation, reviewing the state of implementation and the 

successes and pitfalls of these directives. 

A recent report by the European Commission indicated that over 90% of RBMPs 

mentioned agriculture as a significant pressure in basins by contributing, naming 

particularly the excess of organic matter, nutrients and pesticides. Farm management 

practices are an integral part of RBMPs due to the frequent field operations, such as fertilizer 

management, can address non-point source pollution (Cherry et al., 2008). According to 

Volk et al. (2008), Patoine et al. (2012) and Green et al. (2014) these farm practices can  

compromised water quality status . Also, the report "Status of Europe’s Waters" published 

by the European Environment Agency (EEA, 2012) lists the most important stressors such as 

the nutrient enrichment and eutrophication, sediment and pesticide pollution, water 

abstraction, flash floods, bed and bank modification, and removal of riparian vegetation. 

Pressures are predicted to intensify in the future given the increase of water demand for 

agriculture and energy. Moreover, in a scenario of climate change, there is an uncertainty 

about the real future of water resources availability.  

Recently the United Nations resolution entitled "Transforming our world: the 2030 

Sustainable Development Agenda" (UN News Centre, 2015), targets 17 objectives, including 

the availability and sustainable water management for all, and urgent action to combat 

climate change and its impacts. 

Climate change might impact hydrologic processes of watersheds and their reservoirs 

(IPCC, 2013). In the Mediterranean region this change will possible have a severe effect 

(IPCC, 2013). According to the Framework Convention on Climate Change (UNFCCC, 2013), 

climate change is directly or indirectly related with anthropogenic activities and climate 

variability is related to natural causes. According to the IPCC (2013), Mediterranean region 

will be mainly affected by extreme events regarding temperature and precipitation in two 

extreme seasons: a cold season with extreme precipitation events, and a hot season with 

high temperatures combined with water scarcity. In most prediction studies, climate change 
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may impact nitrogen and phosphorus loads to a greater extent than land use changes 

(Mehdi et al., 2015).  

Since agricultural land can have such a variety of effects on water quality, investigating 

potential land use and management changes in a basin is necessary to achieve the WFD 

objectives which will be evaluated during the planning cycles ending in 2021 and 2027. In 

light of the foregoing, and considering the complexity of watersheds processes, a more 

sustainable and holistic approach to water management should be consider. 

The development of scientific knowledge and computer tools evolved and are now 

able to respond to the complexity of physical and chemical processes implicit in nature, in 

particular in the water bodies. Therefore, mathematical models are now acceptable as 

capable tools to support the design of effective policies. 

To determine the degree of impacts of future climate change combined with land use 

practices, hydrological models are required to explore these influences on surface water 

quality. Simulation studies have shown that when the vegetation cover is strongly altered, 

significant impacts to important hydrological processes such as surface runoff, infiltration or 

evaporation can occur that may be exacerbated by future climate simulations (Pervez and 

Henebry, 2015; Seo et al., 2018; Wang et al., 2009; Zhang and Werner, 2009). The importance 

of using predictive models to simulate conditions of water bodies is implicitly defined in the 

Portuguese Decree-Law no. 77/2006, of March 30, Annex III. Modelling water quality has 

many advantages, since models allow to analyse present and future state, integrating 

changes and environmental factors.  

The uncertainty in the future in terms of climate and societal behaviour is expected to 

increase. Although there are already many studies which use mathematical models for 

predicting water quantity and quality, a more in-depth view is needed for each case study, 

analysing the processes at the watershed and reservoir scale. This approach should always 

be carried out in an integrated way, thus continuously allowing scenarios variation and 

different analytical methodologies in order to effortlessly support water managers and its 

needs. As so, mathematical models should be an efficient management tools to prevent and 

to study the impacts in water resources. Therefore, the objectives of the thesis are: 

1. To access the impacts of future climate and societal scenarios on water quantity and 

quality under a basin scale modelling approach; 

2. To access the future water demand vulnerability in a reservoir scale under an 

integrated modelling approach; 
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3. To access the future trophic status of a reservoir under climate change under an 

integrated modelling approach. 
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1.2 Context 

The candidate started to work as a researcher at MARETEC in 2009, in mathematical 

models at different scales: plot, reservoir and watershed. In 2016, the candidate began to 

work simultaneously in the AQUALOGUS Company, where she continue to develop 

competences in the scope of mathematical modelling, climate change and water resources 

management engineer.  

From 2009 to 2019 she implement different models (MOHID Land and Water, SWAT, 

SWMM, and CE-QUAL-W2) in different areas (Portugal,  Brazil, Mozambique, Zimbabwe, 

Greece, Netherlands, etc.), during several national and international research projects, as 

well as the Sado and Guadiana River Basin Management Plans (2011) and different 

consultancy projects. The Sorraia river basin was the most studied case by the candidate: an 

irrigation service was developed with the MARETEC group, with application of plot models 

with high resolution, where an exhaustive field and modelling work was developed 

(projects Aquapath-Soil, MyFarm, Figaro, Sensyf, and Irrigasys); study of future scenarios in 

the basin (MARS project), and the development of detailed reservoir models to be managed 

operationally (OMeGA project, ongoing with AQUALOGUS and MARETEC), are some 

examples of work carry out in the Sorraia Basin. 

Because of the importance of the Sorraia Valley in Portugal, in particular due to 

agriculture significance, and being representative of the Mediterranean region in terms of 

climate, the candidate decided to deepen her knowledge in the climatic and development 

scenarios, due to the relevance today and in the future, using models as a tool. She hopes, 

with this thesis, to contribute to water management improvement, showing the importance 

of this tools in a predictive perspective. 

 

Some of the work published as author and co-author during the PhD period: 

Navarro E., Segurado P., Branco P., Almeida C., Andersen H., Predicting the ecological status of 

rivers and streams under different climatic and socioeconomic scenarios using Bayesian Belief 

Networks. Limnologica 2019 (submitted). 

Almeida, C.; Ferreira T.; Branco, P.; Segurado, P.; Ramos, T.B.; Neves, R.; Proença de Oliveira, R. 

Evolution of the Trophic Status in a Mediterranean Reservoir under Climate Change: An Integrated 

Modelling Approach. Hydrology Research 2019 (submitted). 

Almeida C., Ramos T., Sobrinho J., Neves R., Proença de Oliveira R. (2019). An Integrated Modelling 

Approach to Study Future Water Demand Vulnerability in the Montargil Reservoir Basin, Portugal. 

Sustainability. 11. 206. 10.3390/su11010206. 

Mateus M., Vieira R., Almeida C., Silva M., Reis F. (2018). ScoRE—A Simple Approach to Select a 

Water Quality Model. Water. 10. 1811. 10.3390/w10121811. 
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Almeida C., Ramos T, Segurado P., Branco P., Neves R., Proença de Oliveira R. (2018). Water 

Quantity and Quality under Future Climate and Societal Scenarios: A Basin-Wide Approach Applied 

to the Sorraia River, Portugal. Water. 10. 1186. 10.3390/w10091186. 

Santos, C., Almeida C., Ramos T., Rocha F., Proença de Oliveira R., Neves R. (2018). Using a 

Hierarchical Approach to Calibrate SWAT and Predict the Semi-Arid Hydrologic Regime of 

Northeastern Brazil. Water. 10.3390/w10091137. 

Deus S, Neves R., Jauch, E, Almeida C., Faial K., Medeiro A., Mendes R., Faial K., Leite J., Deus, R.. 

(2018). Streamflow forecasts due precipitation water in a tropical large watershed at Brazil for flood 

early warning, based on SWAT model. 4. 10.5935/2447-0228.20180027. 

Segurado P., Almeida C., Neves R., Ferreira T., Branco P., (2017) Understanding multiple stressors in 

a Mediterranean basin: combined effects of land use, water scarcity and nutrient enrichment, Science 

of the Total Environment, 624, 1221–1233. https://doi.org/10.1016/j.scitotenv.2017.12.201; 

Ramos T.B., Simionesei L., Jauch E., Almeida C., Neves R., (2017) Modelling soil water and maize 

growth dynamics influenced by shallow groundwater conditions in the Sorraia Valley region, 

Portugal, Agricultural Water Management, 185, 27–42. 

https://doi.org/https://doi.org/10.1016/j.agwat.2017.02.007; 

Simionesei L. Ramos T., Brito D., Jauch E. Leitão P., Almeida C., Neves R.,(2016) Numerical 

simulation of soil water dynamics under stationary sprinkler irrigation with MOHID-LAND. Journal 

of Irrigation and Drainage 2016 https://doi.org/10.1002/ird.1944; 

Silva M., Aguiar A., Neves R., Vasco A., Almeida C., Faccioli G., (2015) Sensitivity analysis and 

calibration of hydrological modeling of the watershed Northeast Brazil Journal of Environmental 

Protection 06(08):837-850 10.4236/jep.2015.68076 2015; 

Mateus M., Almeida C., Brito D., Neves R.; From Eutrophic to Mesotrophic: Modelling Watershed 

Management Scenarios to Change the Trophic Status of a Reservoir. Int. J. Environ. Res. Public Health 

2014, 11(3), 3015-3031; 

Almeida C, Branco P, Segurado P, Ferreira T, Neves  R, Water Quantity And Quality Under Future 

Climate And Development Scenarios: A Basin-wide Approach." 14th International Water Association 

(IWA) Specialist Conference on Watershed and River Basin Management, South Africa. October 2017 

(winner of the Best Presenter Award) 

Almeida C., Sobrinho J., Jauch E., Neves R., Integrated modeling approach to study the impact of 

reservoirs in the watershed: the case study of the Sorraia River basin. EWRA 2015 - 9th World 

Congress of the European Water Resources Association, Turquia, Istambul, 10 - 13 Junho 2015. 
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1.3 Thesis Structure 

The structure of this thesis is based on the objectives described above.  

Chapter 2 – State of the art, focused on the mathematical modelling methodology.  

Chapter 3 presents the application of the SWAT hydrological model to investigate 

water quantity and quality under future and societal scenarios in the Sorraia river basin.  

Chapter 4 integrates the results from the SWAT model applied in previous chapter in 

the MOHID WATER reservoir model to study future water demand vulnerability in the 

Montargil Reservoir.  

Chapter 5 integrates the results from the SWAT model applied in the Chapter 3 in the 

CE-QUAL-W2 reservoir model to study the trophic status under climate change in the 

Montargil Reservoir.  

Chapter 6 provides a general conclusion related to the accomplishment of the 

objectives of this thesis, as well as recommendations for future work.  

The last part of this thesis (APPENDIXES) includes three papers with some relevant 

work done throughout this period. This work shows the importance of integrating 

modelling in different approaches.  
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Chapter 2 State of the Art 

2.1 Mathematical Modelling  

Mathematical modelling is a world-wide tool with the purpose of assisting the study of 

processes in nature, tracing scenarios and supporting management decisions. These include 

studying water balance of a water body, analysing or predicting flood events, analysing 

risks of erosion and its origin, studying water quality issues or assisting the operation of 

reservoirs, among others. Models are commonly categorised as physical-based or empirical-

statistical depending on the basis of the extent to which they represent the physics of the 

processes involved. Physical-based models incorporate equations that express hydrologic 

dynamics and transport. Empirical-statistical models derive functional relationships 

between hydrologic variables. Each method has advantages and disadvantages and usually 

the choice of method depends on the data available and the purpose of the simulation. 

Mathematical models can be classified as deterministic or stochastic (non-deterministic). A 

significant difference between these two model types consists of the quantitative results of 

the simulated variables. Deterministic models result in discrete values for it state variables. 

In water quality models, for example, this result is generally expressed in the parameters 

concentrations. Stochastic models, on the other hand, present ranges of values, specifying 

the probability (in %) of the state variables results to be within the ranges adopted. With the 

increasing of computer capacity that has been verified over the last decades, deterministic 

models (process oriented and distributed in space and time) have been used more 

regularity. Models can be spatial represented as lumped, distributed or pseudo or semi-

distributed. In lumped models the dependent variables are a function of time, and in 

distributed models dependent variables are functions of time and one or more spatial 

variables. A semi-distributed model is a variation of the lumped method and is sometimes 

referred to as a pseudo-distributed approach.  

In 1822-1922, Mulvaney’s developed the rational formula, as considered as the first 

mathematical hydrological model. In the 50’s - 60´s the Stanford Watershed Model (SWM) 

elaborated by Crawford and Linsley in 1966 was developed focussing on water, named 

rainfall-runoff modelling (Donigian  A and Imhoff, 2006). 

Since then, a wide range of hydrological models has been developed. Models use to 

simulate basins hydrology and water quality have been used on a large scale and are crucial 

in a modern water management: the SWAT – Soil and Water Assessment Tool (Neitsch et 

al., 2009) from USDA Agricultural Research Service (USDA-ARS) and Texas A&M AgriLife 

Research, part of The Texas A&M University System, a two-dimensional model derived 

from the SWRBB (Arnold et al. 1990), CREAMS, GLEAMS, EPIC and QUAL2E models, and 

focused on land management at river or basin scale and; the HSPF - Hydrologic Simulation 

Program Fortran (Donigian et al., 1984) from U.S. EPA that simulates the watershed 
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hydrology and water quality for both conventional and toxic organic pollutants; the MIKE 

SHE model (Refsgaard and Storm, 2005) from Dutch Hydraulic Institute, as one of the 

references in a generation of physically based, integrated, distributed watershed models; 

and the MOHID Land model developed by MARETEC at IST- UTL as an integrated model 

grouping 4 mediums (atmosphere, porous media, soil surface and river network) and with 

water movement through the mediums based on mass and momentum balances (Trancoso 

et al., 2009). The MIKE SHE and MOHID Land models are extremely detailed and the main 

difference between them is the spatial method to solve equations where finite differences is 

used in the MIKE SHE model and finite volumes in the MOHID Land.  

On the other hand, models have been developed to study the hydrodynamics and 

water quality processes in larger water bodies such as reservoirs, including: the WASP - 

Water Quality Analysis Simulation Program  (Wool et al., 2003) from U.S. EPA with the 

capability to simulate water and water quality constituents transport; the SisBaHIA (Sistema 

Base de Hidrodinâmica Ambiental), developed by COPPETEC - COPPE/UFRJ (Rio de 

Janeiro, Brazil) to simulate coastal and in-land water bodies (Rosman, 2001), which is 

composed of a 3D hydrodynamic model coupled to a water quality model; the QUAL2Kw, 

which is the recent development of models in the QUAL 2 series (Pelletier et al., 2006), 

released by the U.S. EPA, is a 1D steady-state model for rivers, tributaries and well-mixed 

lakes; the CE-QUAL-W2  model (Cole and Wells, 2015) from US Army Corps of Engineers 

that is a laterally averaged 2D hydrodynamic and water quality, and the 3D numerical 

MOHID Water (Neves, 1985; (Braunschweig et al., 2003; Deus et al., 2013) from MARETEC 

(Marine and Environmental Technology Research Center) at Instituto Superior Técnico (IST) 

which belongs to Technical University of Lisbon (UTL).  

To formulate hypotheses about the basin dynamics, and to simulate several scenarios 

in complex watersheds with reservoirs, many works have been done, using the integrated 

modelling approach, such as Xu et al. (2007) that studied the calibration and validation of 

inked models HSPF and CE-QUAL-W2 in a Virginia, USA watershed, or Debele et al. (2008) 

that used SWAT and CE-QUAL-W2 to study the upland watershed and downstream 

waterbody hydrodynamic and water quality. In Portugal, Portuguese Water Institute (INAG 

– Instituto Nacional da Água) carried out an integrated modelling study of the trophic levels 

of 30 reservoirs under the scope of the Waste Water Treatment Plant directive (INAG, 2009). 

Specifically in the Southern Portugal, where more eutrophication and water management 

issues occurred, Brito et al. (2018) integrated the SWAT and CE-QUAL-W2 models, to study 

the water quality in the Enxoé eutrophic, or Fontes (2010) where Alqueva Reservoir was 

modelled to access the water quality and consequently the trophic state. 
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2.2 Conceptual Modelling - Watershed 

A watershed is defined by natural topographic boundaries and usually involve complex 

ecosystems or highly urbanized and anthropogenic areas. Watershed processes can be 

fragmented into functions and characteristics, including: soil processes and erosion, nutrient 

cycling, pollution transport, riparian habitat and stream buffers, stream morphology and 

channel characteristics, hydrology, and water quality. 

A watershed is a three-dimensional (3D) entity, where it is assumed the river network 

as 1D domain defined from the digital elevation model, the surface land as 2D horizontal 

dimension and the soil as a 3D domain including the surface land (Figure 2.1). The three-

dimensional models can therefore describe the complex processes with accuracy. 

 
Figure 2.1 Schematic view of the three-dimensional structure in a watershed. 

 

MOHID Land is an example of a 3D model which can described the watershed 

processes with high detailed. MOHID Land is a physically-based and spatially distributed 

model, continuous and with a variable time step for the water and property cycles occurred 

in watersheds. The model is based on finite-volumes organized into a structured grid, 

rectangular in the horizontal plane, and Cartesian type in the vertical plane. Fluxes are 

computed over the faces of the finite volumes and state variables are computed at the centre 

to assure conservation of transported properties.  

MOHID Land is an integrated model with four compartments or mediums (atmosphere, 

porous media, soil surface, and river network). Water moves through the mediums based on 

mass and momentum conservation equations. The atmosphere is not explicitly simulated 

but provides data necessary for imposing surface boundary conditions to the model 

(precipitation, solar radiation, wind, etc.) that may be space and time variant.  

Due to the complexity and computational demand of the 3D models the use of these 

models may have limitations: 
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- Simulations of large basins with high resolution; 

- The need of testing different management strategies, where can be performed without 

excessive investment of time or money; 

- To study long-term impacts.  

Therefore, in this thesis, to assess the future impacts on a river basin, under different 

climatic and social scenarios, involving long-term analysis, the SWAT  model was chosen. A 

comparative analysis was developed for several existing models showed in Appendix III 

(Mateus et al., 2018). In the future, and with the computer evolution, mathematical model 

will tend to be 3D. It is described below the model functionalities used in this thesis.  

The Soil and Water Assessment Tool (SWAT)  

The SWAT is a 2D model widely used to simulate watershed processes (Neitsch et al., 

2009). SWAT is a semi-distributed watershed model focused on land management at a basin 

scale, and most of the formulas are empirical.  The model splits the watershed into sub-

basins, and each sub-basin is divided by areas with the same land use, soil and topographic 

characteristics, which form a Hydrologic Response Unit (HRU); a basic computational unit 

assumed to be homogeneous. The soil domain may be divided into vertical layers. The 

relative straightforward formulation used in SWAT allows the model to run more 

demanding simulations within a reasonable time. The hydrology of the model is based on 

the daily water balance equation, as follows: 

SWt=SW0+∑ (Rday -Qsurf-Ea-Wseep-Qgw)

n

i=1

 Equation 2.1 

Where: 

SW t is the final soil water content (mm),  

SW0 is the soil water content at the initial time step (mm),  

Rday is the daily precipitation (mm),  

Qsurf is the surface runoff (mm),  

Ea is the actual evapotranspiration (mm),  

W seep is the percolated water (mm), 

Qgw is the return flow (mm),  

all referring to day i, which varies from 1 to the number of simulated days (n). 

 

The surface runoff is computed from daily precipitation using the empirical formula of 

the Soil Conservation Service Curve Number (SCS-CN) method (Mishra and Singh, 2003).  

 

Qsurf=
(Rday -Ia)

2

(Rday -Ia+S)
 Equation 2.2 

 

Where: 
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Ia is the initial abstractions which includes surface storage, interception, and infiltration prior to 

runoff (mm),  

S is the retention parameter which varies with the soil type, land use, land management, slope, 

and soil water content. 

 

When the water leaves the deepest soil layer by percolation, it can recharge the shallow 

and deep aquifers according to a fraction established by the user. These fraction is crucial 

during the calibration process. The recharge formulation is based on an exponential function 

proposed by Sangrey et al. (1984), and depends on the soil water retention capacity, the 

antecedent conditions and a parameter called GW_DELAY. The equation simulates the time 

delay since the water exits the soil profile until it recharges the aquifers. 

 

Wrchrg,i=[1-exp(
-1

GWDELAY

)×Wseep+exp(
-1

GWDELAY

)]×Wrchrg,i-1 Equation 2.3 

 

Where: 

W rchrg,i is the amount of recharge entering the aquifers on day i (mm), 

GW_DELAY is the delay time of the overlying geologic formations (d), 

W seep is the percolation from the deepest layer, that is the total amount of water exiting the 

bottom of the soil profile on day i (mm), 

W rchrg,i-1 is the amount of recharge entering the aquifers on day i-1 (mm). 

 

Shallow aquifer can contribute to the rivers baseflow. In SWAT model the constant 

baseflow recession, expressed by the ALPHA_BF parameter. The ALPHA_BF parameter is 

established by the user, and crucial during the calibration process. This parameter is a direct 

index of groundwater flow response to changes in recharge (Smedema and Rycroft, 1983): 

 

Qgw,i=Qgw,i-1×exp(-ALPHABF×∆t)+Qrchrg,sh×(1-exp(-ALPHA_BF×∆t) ) Equation 2.4 

 

Where: 

Qgw,i is the groundwater flow into the main channel on day i (mm), 

Qgw,i-1 is the groundwater flow into the main channel on day i-1 (mm), 

ALPHA_BF is the baseflow recession constant (-), 

Δt is the time step (d), 

W rchrg,sh is the amount of recharge entering the shallow aquifer on day i (mm). 

 

In SWAT model the potential evapotranspiration can be calculated with the method of 

Hargreaves (Hargreaves et al., 1985), Priestley-Taylor method (Priestley and Taylor 1972) or 

by the Penman Monteith (Monteith, 1965). The latter method, considered in this thesis, is 

referred as an international standard method, being widely used: 
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ET0=
0.408 ∆(Rn-G)+γ

900
T+273

u2 (es-ea)

∆+γ(1+0.34u2)
 Equation 2.5 

Where: 

ETo reference evapotranspiration [mm day -1], 

Rn net radiation at the crop surface [MJ m -2 day -1], 

G soil heat flux density [MJ m -2 day -1], 

T mean daily air temperature at 2 m height [°C], 

u2 wind speed at 2 m height [m s -1], 

es saturation vapour pressure [kPa], 

ea actual vapour pressure [kPa], 

es - ea saturation vapour pressure deficit [kPa], 

Δ slope vapour pressure curve [kPa °C-1], 

γ psychrometric constant [kPa °C-1]. 

 The actual evapotranspiration is calculated as the sum of three components: 

evaporation from plant canopy, plant transpiration and soil evaporation. For the calculation 

of transpiration the leaf area index (LAI) is necessary. This parameter is estimated for each 

HRU using a standard plant growth. SWAT calculates the potential plant growth for each 

day of simulation as a function of the energy that plant intercepts and the efficiency of its 

conversion into biomass. The energy is estimated as a function of solar radiation and leaf 

area index. The maximum biomass growth is dependent on the quantity of 

photosynthetically active radiation intercepted by leaves and the efficiency of radiation use. 

Actual growth and actual LAI are dependent on the stress factors such as water, 

temperature and nutrients. Whenever the base temperature is higher than the base 

temperature of the plant, growth is accumulated. The difference between daily temperature 

and the base temperature of the plant accumulated daily basis is called the "heat unit". 

Optimal LAI is related with crop stage which in turn depends on the crop heat units. These 

heat units are defined in the SWAT database for each crop. Therefore LAI is simulated as a 

function of heat units: 

 

frPHU = 
∑ HUid

i=1  

PHU
 Equation 2.6 

 

Where: 

frPHU is the fraction of potential heat units accumulated for the plant on day d in the growing 

season,  

HU is the heat units accumulated on day i (heat units),  

PHU is the total potential heat units for the plant (heat units).  

 

LAI is defined as the area of green leaf per unit area of land (Watson, 1947). Once the 

maximum LAI is reached, it remains constant until leaf senescence begins to exceed leaf 
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growth. Once leaf senescence becomes the dominant growth process, the LAI is calculated as 

(Neitsch et al., 2009): 

 

LAI =  16 LAImx  (1 −  frPHU)2 Equation 2.7 

 

Where: 

LAI is the leaf area index for a given day,  

LAImx is the maximum leaf area index,  

frPHU is the fraction of potential heat units accumulated for the plant on a  given day in  the 

growing season. 

 

Therefore the total leaf area index for a given day is calculated in SWAT as: 

 

LAIi=LAIi-1+∆LAIi Equation 2.8 

 

Where: 

ΔLAIi is the leaf area added on day i, 

LAIi and LAIi-1 the leaf area indices for day i and i-1 respectively.  

 

Water which is not evapotranspirated nor infiltrated in the soil due to field capacity 

condition, is superficially drained. Surface runoff is a major component of the water cycle 

and it is the primary agent along with precipitation, in soil erosion by water. Soil erosion in 

SWAT is computed from rainfall and surface runoff with the Modified Universal Soil Loss 

Equation (MUSLE) (Williams, 1975), which is a modified version of the Universal Soil Loss 

Equation (USLE) developed by Wischmeier and Smith (1978). In MUSLE, the rainfall energy 

factor is replaced with a runoff factor, as follows: 

 

sed=11,8×(Qsurf.qpeak
.areahru)

0,56

×KUSLE×CUSLE×PUSLE×LSUSLE×CFRF Equation 2.9 

 

Where: 

sed is the sediment yield on a given day (ton),  

qpeak is the peak runoff rate (m3 s-1), 

areaHRU is the area of the HRU (ha),  

KUSLE is the USLE soil erodibility factor,  

CUSLE is the USLE cover and management factor,  

PUSLE is the USLE support practice factor,  

LSUSLE is the USLE topographic factor,  

CFRG is the coarse fragment factor.  

 

The erosion process is very relevant for the entrainment of nutrients to the aquatic 

system, as well as for soil impoverishment. The nutrient component includes inputs from 
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agriculture, transport with runoff and groundwater, consumption by plants, and 

mineralization processes occurring in the soil (Neitsch et al., 2009). The SWAT model can 

further simulate the nitrogen (N) and phosphorus (P) cycles. 

The N present in the soil is represented by five different pools, considering mineral 

and organic forms. The mineral N is divided into two pools: ammonia (NH4+) and nitrate 

(NO3−). The organic N is divided into three pools: active, stable (associated to the humic 

substances) and fresh pool (associated to the crop residue). N transport occurs mainly in the 

nitrate and organic N forms. Nitrate may be transported with surface runoff, lateral flow or 

percolation, using the following generic formula (Neitsch et al., 2009): 

 

NO3=β
NO3

concNO3,mobile Qx Equation 2.10 

 

Where: 

NO3 is the nitrate removed by each of the physical transport mechanisms here considered (i.e., 

surface runoff, lateral flow, percolation) (kg ha -1),  

βNO3 is concentration of nitrate in the mobile water for the top 10 mm of soil (kg ha -1) (only 

considered for surface runoff and subsurface lateral flow in the top layer),  

Qx is the physical transport mechanism considered (surface, lateral flow, or percolation).  

 

The Nitrate component entering the shallow aquifer through percolation (leaching) 

from the soil profile may remain in the aquifer, be moved with groundwater flow into the 

main channel, be transported out of the shallow aquifer with water moving into the soil 

zone in response to water deficiencies, or be moved with recharge to the deep aquifer. 

On the other hand, organic N is mainly transported with sediment to the stream, 

similarly to P transport. Daily organic N runoff losses estimation are based on the sediment 

yield, the N enrichment ratio, and the concentration of N in the topsoil layer, which is 

dependent of the amount of organic N in the fresh, stable, and active pools (Neitsch et al., 

2009). 

In SWAT, molecular nitrogen is added naturally by biological and atmospheric 

nitrogen fixation. Anthropogenic activities and agricultural practices such as the use of 

fertilizers also act as sources of N in the environment. After fixation, N is converted to NH4+ 

in the soil and then consumed by plants in the form of NO3−. Mineralisation is considered by 

the fresh organic pool associated with crop residues and the active pool associated with soil 

humus. 

The remained fraction of crop residues after harvest is included into the first soil layer. 

N is removed from the soil through volatilisation, denitrification, erosion, and leaching 

(NO3− form). The total amount of NH4+ lost by volatilisation or nitrification is calculated 

considering the NH4+ amount and environmental factors. The SWAT code calculates the 

denitrification process according to the soil carbon and nitrate source, a rate coefficient, and 

different environmental factors such as temperature and soil water content. The 

denitrification process occurs in anaerobic conditions.  
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Ndenit=NO3 ×(1- exp(-CDN×γ
temp

×Corg)) Equation 2.11 

 

Where:  

Ndenit is the amount of nitrogen lost by denitrification (kg N ha -1), 

NO3 is the amount of nitrate in the layer (kg N ha -1), 

CDN is the rate coefficient for denitrification (d-1), 

γtemp is the nutrient cycling temperature factor (-), 

Corg is the amount of organic carbon in the layer (%). 

 

In the phosphorus cycle, three inorganic P pools (solution, active, and stable) and three 

organic P pools (active, stable and fresh) are included in the model. The fresh organic pool is 

associated with crop residue and microbial biomass, while the active and stable organic 

pools are associated with the soil humus. The sum of the six pools represents total soil P. P is 

simulated considering the supply and demand during plant growth. Soluble and organic 

forms can be removed from the soil via mass flow (runoff). The amount of soluble P 

removed in runoff is predicted using solution P concentration in the top 10 mm of the soil 

profile, the runoff volume, and a partitioning factor. Sediment transport of P is then 

simulated with a loading function (Neitsch et al., 2009). SWAT considers the amount of 

organic and mineral P transported with sediment to the stream with a loading function 

developed by McElroy et al. (1976) and later modified by Williams and Hann (1978): 

 

 

sedPsurf=0,001×concsedP

sed

areaHRU
εP.sed Equation 2.12 

 

Where: 

 sedPsurf is  the amount of P transported with sediment to the main channel in surface runoff (kg 

ha-1), 

εP:sed is the P enrichment ratio,  

concsedP is the concentration of P  attached to sediment in the top 10 mm (g m -3). 

 

The concsedP is computed from the amount of P in the different pools, as: 

 

 

concsedP=100×
(minPact,surf+minPact,surf+orgPhum,surf+orgPfrch,surf)

ρ
b

depth
surf

 Equation 2.13 

 

Where: 

minPact,surf is the amount of P in the active mineral pool (kg ha -1), 

minPsta,surf is the amount of P in the stable mineral pool (kg ha -1),  

orgPhum,surf is the amount of P in humic organic pool (kg ha -1),  
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orgPfrsh,surf is the amount of P in the fresh organic pool (kg ha -1),  

ρb is the bulk density of the top soil layer (Mg m -3). 
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2.3 Conceptual Modelling – Reservoir 

Artificial reservoirs have been built to meet needs for water consumption (urban, 

irrigation or industrial), to produce energy or to regulate river levels/flows. Water quality in 

a reservoir can be imposed by consumption requirements or by legal issues. The water 

quality is determined by the internal processes and the inflows, and water residence time is 

determinant. The processes that occur in the reservoir depend, therefore, mainly on the 

residence time. Similar to watersheds, a reservoir is a three-dimensional body (Figure 2.2) 

and extremely complex, especially in environments where stratification occurs. As referred 

above there are 3D models which can describe the complexity of the natural processes with 

detailed. 

 

 
Figure 2.2 Schematic view of the three-dimensional structure in a reservoir. 

 
MOHID Water such as MOHID Land, is a three-dimensional numerical model to 

simulate surface water bodies such reservoirs. The spatial discretization using the finite 

volume approach technique (the spatial coordinates are independent, and any geometry can 

be chosen for every dimension), allow more flexibility in the subdivision of the vertical and 

horizontal domain, and in implementation of innovative vertical coordinates, adaptable to 
each particular case. MOHID Water permits to use the model in any dimension (1D, 2D and 

3D).  

Due to the complexity and computational demand of the 3D models the use of these 

models may have limitations, such as in the 3D watershed model: 

- Simulations of large reservoirs with high resolution; 

- The need of testing different management strategies, where can be performed without 

excessive investment of time or money; 

- To study long-term impacts.  
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Surface Runoff
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Percolation Return flow
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Sediment Inflows
Nutrient Inflows
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SedimentsAlgae
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Therefore, in this thesis, to assess the future impacts on a reservoir, under different 

climatic and social scenarios, involving long-term analysis, the MOHID Water in 2D was 

chosen considering only the water balance in the reservoir, and the CE-QUAL-W2 (2D) to 

simulate water quality processes, due to the possibility of this model to represent 

stratification process with accuracy and with a low computational demand, when 

comparing with MOHID Water 3D. It is described below the MOHID Water and CE-QUAL-

W2 models main functionalities used in this thesis.  

MOHID Water Modelling System  

One of the reservoir model considered in this thesis is the MOHID Water model (from 

Modelo Hidrodinâmico acronym to hydrodynamic model in Portuguese) Neves 1985 

(Braunschweig et al., 2003; Trancoso et al., 2009). MOHID is a 3D water modelling system, 

developed by MARETEC (Marine and Environmental Technology Research Center) at 

Instituto Superior Técnico (IST) which belongs to the Universidade de Lisboa in Portugal.  

MOHID is composed by two main executables: MOHID Water and MOHID Land. This 

model consists of a set of modules interconnected using an object orientation. Each module 

is responsible for management of part of information, constituting a total of 40 modules 

developed over 3 decades of research work. In this thesis the MOHID Water model is 

considered to simulate reservoir water dynamic. 

Since the beginning this model has been applied to a variety of locations subject to 

different conditions such as: several coastal and estuarine areas, particularly along the 

Portuguese coast (Martins, 1999). MOHID has also been applied to the several Portuguese 

fresh water reservoirs such as Monte Novo, Roxo and Alqueva (Braunschweig, 2001), in 

order to study the flow and water quality (Brito et al., 2018; Deus et al., 2013; Franz et al., 

2016; Trancoso et al., 2005). Campuzano F., 2018). 

The model solves the three-dimensional incompressible primitive equations. 

Hydrostatic, Boussinesq and Reynolds approximations are assumed in the equations 

presented. The momentum balance equations for horizontal velocities are, in differential 

form and Cartesian coordinates: 

 

∂u

∂t
+

∂(uu)

∂x
+

∂(uv)

∂y
+

∂(uw)

∂z
-fv=-

1

ρ
0

∂p

∂x
+

∂

∂x
(vH

∂u

∂x
) +

∂

∂y
(vH

∂u

∂y
) +

∂

∂z
(vv

∂u

∂z
) Equation 2.14 

  

∂v

∂0
+

∂(uv)

∂x
+

∂(vv)

∂y
+

∂(vw)

∂z
-fu=-

1

ρ
0

∂p

∂x
+

∂

∂x
(vH

∂v

∂x
) +

∂

∂y
(vH

∂v

∂y
)+

∂

∂z
(vv

∂v

∂z
) Equation 2.15 

 

Where: 

u, v and w are the components of the velocity vector in the x, y and z directions respectively, 

f the Coriolis parameter, 
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vH and vv are the turbulent viscosities in the horizontal and vertical directions, 

p is the pressure.  

 

Assuming hydrostatic pressure the vertical momentum equation becomes an equation 

for pressure: 

 
∂p

∂Z
+ρg=0 Equation 2.16 

And vertical velocity must be computed using the continuity equation (assuming 

constant density, according to the Boussinesq approach): 

 

∂u

∂x
+

∂v

∂y
+

∂w

∂z
=0 

Equation 2.17 

 

The Equation 2.17, integrated between bottom and the depth z where w is to be 

calculated gives: 

 

𝑤(z)=-
∂

∂x
(∫ udz

z

-h

) -
∂

∂y
(∫ vdz

z

-h

) 
Equation 2.18 

 

The free surface equation is obtained integrating the equation of continuity over the 

whole water column (between the bottom (z=-h) and the free surface elevation (z=η): 

 

∂η

∂t
+

∂

∂x
(∫ udz

η

-h

) +
∂

∂y
(∫ vdz

η

-h

) =0 Equation 2.19 

Where: 

g is the gravity (m s-2), 

ρ is density (g m-3).  

 

If the atmospheric pressure patm is subtracted from p, and density ρ is divided into a 

constant reference density ρ0 and a deviation ρ' from that reference density, after integrating 

between the depth z where pressure is being calculated and the free surface gets: 

 

p(z)=p
atm

+ρ
0
g(η-z)+g ∫ ρ'dz

η

z

 Equation 2.20 

 

Deriving this equation in the horizontal directions gets the pressure gradient to be 

used in the horizontal momentum equations: 

 

∂p

∂xi
=

∂p
atm

∂xi
+ρ

0
g

∂η

∂xi
+g∫ (

∂ρ'

∂xi

)dz+ρ
s
'g

∂η

∂xi

η

z
 Equation 2.21 
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∂p

∂xi
=

∂p
atm

∂xi
+ρ

s
g

∂η

∂xi
+g∫ (

∂ρ'

∂xi

)dz
η

z
 Equation 2.22 

The pressure gradient is the sum of the gradients of atmospheric pressure, of sea 

surface elevation and of the density gradient (baroclinic pressure gradient). The two first 

terms depend only on the free surface properties and exert their effect over the whole water 

column (because of that they are called barotropic terms). The value of the latter depends on 

the vertical density distribution and is called baroclinic term.  

As referred, the MOHID model consists of a set of modules interconnected using an 

object-oriented programming. Each module is responsible for the management of part of 

information. In this thesis the following modules were considered for simulating water 

variation dynamics: Model, Atmosphere, Geometry, Hydrodynamic, Atmosphere, Interface 

Water Air, Turbulence and Discharges. A brief description about each module is given 

below.  

 

The Model Module is the topmost module of the MOHID Water Modelling System 

and it is responsible for constructing, modifying and destructing each model and for 

controlling information fluxes between the different modules, and time and mapping 

evolution. 

 

The Geometry Module computes the lateral areas and volumes of the finite volumes, 

based upon the surface elevation and the bathymetric data. This information is updated as 

needed, and published to the other modules of the MOHID model. 

It also uses a finite volume formulation to discretize the equations, applying each 

equation macroscopically to each control volume, which is determined by the grid and 

geometry implemented for the study domain. In this approach, the discrete form of the 

governing equations is applied macroscopically to a cell control volume. A general 

conservation law for a scalar U, with sources Q in a control volume Ω is then written as: 

 

𝜕

𝜕𝑡
(∫ 𝑃𝑑𝛺

𝛺

) + ∮ 𝐹.⃗⃗  ⃗𝑑 𝑆 = ∫ 𝑄
𝛺

𝑑𝛺
𝑆

 Equation 2.23 

Where: 

F are the fluxes of the scalar through the surface, 

S embedding the volume.  

 

Discretizing this expression in an elementary control volume Ωj, it is obtain: 

 
∂(PjΩj)

∂t
+ ∑ F⃗ .

faces

S⃗ =QjΩj Equation 2.24 
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In this equation it is assumed that the volume is small so that properties are uniform. 

Actually, the control volume can have any shape since only fluxes among cell faces are 

required (Montero, 1999; Martins et al., 2000).  

The Hydrodynamic module solves the Navier-Stokes equations, considering the 

hydrostatic, Boussinesq and Reynolds approximations (Martins et al., 2000; Leitão, 2003): 

 

∂

∂t
∫ v⃗⃗ H

V
dV=-∮ v⃗⃗ H(v⃗⃗ .n⃗⃗ )

A
dA+ ∮ υT(∇⃗⃗ (v⃗⃗ H).n⃗⃗ )

A
dA-

1

ρ
∮ p.n⃗⃗ H

A
dA+ ∫ 2Ω⃗⃗⃗ ×

V
v⃗⃗ HdV+F⃗  

Equation 2.25 

 

Where: 

𝑉 represents the control volume (m3), 

𝑣 𝐻 = (𝑢, 𝑣) the horizontal velocity vector, 

 𝑣 = (𝑢, 𝑣, 𝑤) the velocity vector, 

 �⃗�  the normal vector to the bounding surface (𝐴), 

�⃗� 𝐻 the normal vector related to the horizontal plane, 

 𝜐𝑇  the turbulent viscosity, 

 𝜌 the water density (g m-3), 

 𝑝 = 𝑔 ∫ 𝜌𝑑𝑧 + 𝑝𝑎𝑡𝑚

𝜂

𝑧  the water pressure, 

 𝑔 the gravitational acceleration (m s -2), 

 𝑝𝑎𝑡𝑚  the atmospheric pressure, (kPa) 

 𝜂 the water level (m), 

 Ω⃗⃗  the earth rotation vector, 

𝐹  the external forces, which include the wave-induced force (gradient of the radiation stress) 

computed by the wave model.  

 

The Atmosphere module is responsible for meteorological data needed to compute 

processes occurring at the water-air interface, such as computing wind shear stress, 

radiation balances, latent and sensible heat fluxes. 

 

The Water-Air Interface module is responsible by processes occurring at the water-air 

interface, such as computing wind shear stress, radiation balances, latent and sensible heat 

fluxes. This module uses the Atmosphere Module as a database for meteorological data and 

combines it with information from, for example, Module Hydrodynamic to compute heat 

and momentum fluxes across the water-air interface. 

 

The Turbulence module is a one-dimensional turbulence model, based on GOTM 

which stands for General Ocean Turbulence Model (http://www.gotm.net/), and consists of a 

one dimensional water column for most important hydrodynamic and thermodynamic 

processes related to vertical mixing in natural waters. Module GOTM is a "wrap-up" module 

containing GOTM routines which were coupled into MOHID in 2001. This routines consist 
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of a set of turbulence models including a k-ε model and Mellor-Yamada second order 

turbulent closure model (Mellor and Yamada, 1982).  

 

The Discharges module handles all the point discharges in MOHID Water Modelling 

System. These discharges can be simple water discharges but can also have properties such 

as properties concentration (temperature, salinity, nutrients, contaminants, etc.) and/or 

momentum.  

 

Boundary conditions 

Boundary conditions are required due to spatial derivatives at free surface, solid 

boundaries, open boundaries and movable boundaries. Some of boundary conditions 

depend on the properties inside the model and their calculation must be embedded on the 

numerical algorithm and other boundary conditions depend only on external variables (e.g. 

discharges, solar radiation) and they can be imposed as explicit fluxes. 

Free surface 

Advective fluxes of mass and momentum across the surface are assumed to be null. 

This condition is imposed by assuming that the vertical flux of W at the surface is null: 

𝑊𝑓𝑙𝑢𝑥𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 0  

Diffusive flux of momentum is imposed explicitly by means of a wind surface stress, 

τw: 

∂vH̅̅ ̅̅

∂z
|surface=τ⃗ w  

Wind stress is calculated according to a quadratic friction law: 

𝜏 𝑤 = 𝐶𝐷𝜌𝑎 �⃗⃗⃗� |�⃗⃗⃗� |  

Where  

CD (varying between 0.001 and 0.002) is a drag coefficient that increases with the wind speed,  

ρa is air density  

W is the wind speed at the reference height used to estimate the drag coefficient (10 m above the sea 

surface). 

 
Bottom boundary 

Advective mass and momentum fluxes across the bottom interface are null and 

diffusive flux of momentum is estimated by means of a bottom stress that is calculated by a 

non-slip assumption. A quadratic law is assumed to account for turbulent flow. So, the 

diffusive term at the bottom is written as: 

v
∂v⃗ H

∂Z
|bottom=

τ⃗ b

ρ
=CfV⃗⃗ H|V⃗⃗ H| 
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Cf is the bottom friction coefficient calculated according to the velocityV⃗⃗ H used to compute the 

bottom shear.  

Assuming a logarithmic profile 

|V⃗⃗ H|=
𝑈𝜏

𝑘
𝑙𝑛 (

𝑧

𝑍0

) 

𝑈𝜏 = √
𝜏𝑏

𝜌
 

Where 

k is the von Karman constant (k0.41)  

 Z0 is rugosity length, i.e. the height above the bottom where according to the logarithmic law the 

velocity would be zero.  

The law of the wall describes the physical distance above the bottom from which the 

logarithmic law applies. It is clear that between this height and the wall the logarithmic law can not 

be applied. 

The rugosity length must be determined empirically and tend to decrease with the 

flow velocity. 

From equations above: 

Cf =(
k

ln (
z
z0

)
)

2

  

The friction coefficient depends on the depth at which the velocity is computed.  

Lateral closed boundaries 

At these boundaries, the domain is limited by land and velocity is parallel to the 

boundary. This is imposed in the model nullifying the velocity component perpendicular to 

the closed boundary. In reality there is a velocity gradient perpendicular to the solid 

boundary that generates a diffusive flux of momentum. The ratio between this flux and the 

vertical flux associated to the bottom shear is proportional to the ratio between flow depth 

and width and consequently it is important only in deep and narrow channels and its 

accurate calculation requires the use of fine horizontal grid. When that is not the case it is 

more convenient to assume a free slip condition, i.e. to neglect horizontal diffusion. The 

typical boundary condition to be used are: 

𝜕�⃗� 𝐻
𝜕𝜂

= 0 
 

�⃗� . �⃗� = 0  
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In the finite volume formalism, these conditions are implemented specifying zero 

normal water fluxes and zero momentum diffusive fluxes at the cell faces in contact with 

land. 

 

CE-QUAL-W2- Hydrodynamic and Water Quality Model 

The CE-QUAL-W2 is a bi-dimensional model developed by a collaboration between 

the U.S. Army Corps of Engineers and the Water Quality Research Group at Portland State 

University (Cole and Wells, 2015). Since Version 3.5, the model is maintained by the Water 

Quality Research Group at Portland State. The current version (version 4.1) used in this 

thesis, simulates the systems hydrodynamics and water quality both vertically and 

longitudinally in both stratified and not stratified systems. The model assumes lateral 

homogeneity and supports vertical and horizontal gradients of all calculated properties 

(Cole and Wells, 2015).  

The model was developed to allow simulation of water bodies where resolution of 

water quality gradients over time in longitudinal as well as vertical axes are required (Cole 

and Wells, 2015).  The geometry of the computational grid is determined by representative 

bathymetry; longitudinal segments (identified as lengths), vertical spacing of layers 

(identified as heights), and average reservoir cross-sections (identified as widths). The model 

allow to include flow boundary conditions, branches, multiple withdrawals, and other 

features. 

This model is based on the finite difference solution of laterally averaged equations of 

fluid motion. The governing equations are obtained by performing a mass and a momentum 

balance of the fluid phase about a control volume, as presented simplified below (Cole and 

Wells, 2015): 

x-momentum:  

∂UB

∂t
+

∂UUB

∂x
+

∂WUB

∂z

= gB sin α +gcosαB
∂η

∂X
-

∂cos αB

ρ
∫

∂ρ

∂X
dZ+

1

ρ

z

η

∂Bτxx

∂X
+

1

ρ

∂Bτx

∂X
+

1

ρ

∂Bτxz

∂Z
+qBUx 

 

Equation 2.26 

z-momentum:  

0=gcosα -
1

ρ

∂P

∂Z
 Equation 2.27 
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Free surface equation: 

Bη

∂η

∂t
=

∂

∂X
∫ UBdz

h

η
 Equation 2.28 

 

 

Continuity: 

 

∂UB

∂x
+

∂WB

∂z
=qB Equation 2.29 

Equation of state:  

ρ=f(TW,ΦTDS ,ΦSS) Equation 2.30 

Conservation of mass/heat:  

∂BΦ

∂t
+

∂UBΦ

∂X
+

∂WBΦ

∂Z
-

∂(BDx
∂Φ
∂X

)

∂X
-

∂(BDz
∂Φ
∂Z

)

∂Z
=q

Φ
B+SΦB 

 

Equation 2.31 

 

Where: 

B is the width (m), 

U is the longitudinal velocity (m s -1), 

W is the vertical velocity(m s -1), 

q is the inflow per unit width(m s -1), 

α is the channel angle (°), 

Φ is the concentration or temperature, 

η is the water surface elevation (m), 

P is the pressure, 

h is the depth (m), 

Tw is the water temperature (°C), 

ΦTDS is the concentration of TDS (mg/l), 

Φss is the concentration of suspended solids (mg/l), 

ρ is the density (g m-3). 

 

A lake can exchange heat with the atmosphere, inflows, out flows, and the bed 

sediments. 

In the CE-QUAL-W2 model the surface heat exchange can be formulated as a term-by-

term process using the explicit adjacent cell transport computation as long as the integration 

time-step is shorter than or equal to the frequency of the meteorological data,  and are 
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depending on water surface temperatures. Term-by-term surface heat exchange is computed 

as: 

 

Hn =Hs + Ha + He + Hc – (Hsr Har Hbr)  Equation 2.32 

 

Where:  

Hn is the net rate of heat exchange across the water surface (W m-2), 

Hs is the incident short wave solar radiation (W m-2), 

Ha is the incident long wave radiation (W m-2), 

Hsr is the reflected short wave solar radiation (W m-2), 

Har is the reflected long wave radiation (W m-2), 

Hbr is the back radiation from the water surface (W m-2), 

He is the evaporative heat loss (W m-2), 

Hc is the heat conduction (W m-2). 

This model computes biogeochemical processes such as nitrogen, phosphorus, carbon 

and oxygen cycles, as well as the dynamics of algae and organic matter. In the organic 

matter (OM), the dissolved non-refractory OM (LDOM), the dissolved refractory OM 

(RDOM), the particulate non-refractory OM (LPOM) and the particulate refractory OM 

(RPOM) are considered in the model. The concentrations properties are calculate based on a 

philosophy of source/sink associated to each cell of the model in order to conserve mass. In 

order to calculate the evolution of algal species concentration, their maximum growth, 

respiration, excretion and mortality rates are considered, as well as limiting factors, such as 

light intensity, nutrients concentration and water temperature. In order to solve the 2D 

advection-diffusion equation, the source/sink term, must be specified: 

 

Sg=K0θg
(T-20)-K1θg

(T-20)Φg-ωg

∂Φg

∂Z
-αI0(1-β)e-λz . Φg +

Asur

Vsur

KL(Φs-Φg ) Equation 2.33 

 

Where:  

θg is the temperature rate multiplier (-), 

T is the water temperature (oC)  

α is the photo degradation parameter (m2 J-1), 

Io is the radiation at surface (W m-2), 

λ is the light extinction coefficient (m-1),  

β is the fraction of short wave solar absorbed on the surface, 

ωg is the settling velocity (m s-1), 

K0 is the zero order decay coefficient (g m-3 s-1 at 20°C), 

K1 is the first order decay coefficient (s-1 at 20°C), 

фg is the generic constituent concentration (g m-3 ), 

фs is the generic constituent concentration gas saturation in the atmosphere (g m-3 ), 

Asur is the surface area (m2), 

Vsur is the surface volume (m3), 

KL is the surface gas transfer coefficient (m s -1). 

 



 

 

29 
 

Typically, the algal community is represented as a single assemblage or is broken 

down into diatoms, greens, and cyanobacteria. The rate equation for each algal group is:  

 

Sa=Kag Φa -KarΦa -Kae Φa -Kam Φa-ωa

∂Φa

∂z
- ∑(ZμΦzoo

σalg Φa

∑ σalg Φa+σpomΦlpom+ ∑ σzooΦzoo

) 

 
 

Equation 2.34 

 

Where:  

z is the cell height  

Zµ is the net growth rate of a zooplankton species, 

σ is the zooplankton grazing preference factors, 

Kag is the algal growth rate (sec-1), 

Kar is the algal dark respiration rate (sec-1), 

Kae is the algal excretion rate (sec-1), 

Kam is the algal mortality rate (sec-1), 

ωa is the algal settling rate (m sec-1), 

фa is the algal concentration (g m-3). 

Algal growth rate is computed by modifying a maximum growth rate affected by 

temperature, light, and nutrient availability: 

 

Kag =γ
ar

γ
af

λminKag max  Equation 2.35 

 

Where: 

γar is the temperature rate multiplier for rising limb of curve 

γaf is the temperature rate multiplier for falling limb of curve 

λmin is the multiplier for limiting growth factor (minimum of light, phosphorus, silica, and 

nitrogen) 

Kag is the algal growth rate (sec-1), 

Kag max is the maximum algal growth rate (sec-1). 

 

Phosphorus is an important element in aquatic ecosystems since it serves as one of the 

primary nutrients for phytoplankton growth (Figure 2.3). In many fresh waters, phosphorus 

is considered to be the nutrient limiting maximum production of phytoplankton biomass 

(Schindler, 1971; Schindler et aI., 1973; Vollenweider, 1968, 1976). Phosphorus is assumed to 

be completely available as ortho-phosphate (PO,) for uptake by phytoplankton. 

Macrophytes are specified as either taking P from the sediments or from the water column.  

Nitrite is an intermediate product in nitrification between ammonium and nitrate. Nitrate is 

used as a source of nitrogen for algae and epiphyton during photosynthesis. Preferential 

uptake of ammonium over nitrate by algae and periphyton is now included. Nitrogen may 

be the limiting nutrient for algae in systems with high phosphorus loadings or in estuaries. 

Some species of blue-green algae are capable of fixing atmospheric nitrogen for use in 
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photosynthesis. This process can be included by setting the nitrogen half-saturation 

concentration for algal growth to zero (Figure 2.4). 

 
Figure 2.3 Scheme of the main phosphorus processes in the CE-QUAL-W2 model. 

 

 
Figure 2.4 Scheme of the main nitrogen processes in the CE-QUAL-W2 model. 

 

Oxygen is one of the most important elements in aquatic ecosystems. It is essential for 

higher forms of life, controls many chemical reactions through oxidation, and is a surrogate 

variable indicating the general health of aquatic systems. The model includes both aerobic 

and anaerobic processes. Simulations can be used to identify possibilities for both 
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metalimnetic and hypolimnetic oxygen depletion and its impact on various water control 

management alternatives. If a single variable were to be measured in aquatic systems that 

would provide maximum information about the system state, it would be dissolved oxygen. 

The DO concentration was calculated as fractions of the saturated DO concentration (DO sat), 

itself a function of water temperature. 

 

DOsat=exp(-139,3441+(
1,5757×105

T
)-(

6,642×107

T2
)+(

1,2438×1010

T3
)- (

8,622×1011

T4
)) 

 

 Equation 2.36 

Where:  

DOsat is the saturated DO concentration (mg l -1), 

T is the water temperature (K).  

DO concentration in inflow water to the reservoir is assumed as 80% saturation. 
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Chapter 3 Water Quantity and Quality under 

climate and societal scenarios: a basin-wide 

approach 

 

The material on which this chapter is based has been previously published in: Almeida, C.; 

Ramos, T.B.; Segurado, P.; Branco, P.; Neves, R.; Proença de Oliveira, R. Water Quantity and 

Quality under Future Climate and Societal Scenarios: A Basin-Wide Approach Applied to the Sorraia 

River, Portugal. Water 2018, 10, 1186. 

 

Abstract 

Water resources are impacted by several stressors that compromise their availability; 

including population growth and climate change. These stressors are expected to 

progressively intensify in most regions of the world, with direct impact on watersheds and 

river systems. This study investigates the effect of different watershed pressures scenarios 

including climate change in the hydrological regime and water bodies of the Sorraia River 

basin (Portugal). This catchment includes one of the largest irrigated area in the country, 

being thus strongly influenced by anthropogenic activities, associated to hydrological 

(irrigation, flow regulation, damming) and nutrient stressors. The Soil Water Assessment 

Tool (SWAT) was used to simulate water flow and nutrient dynamics in the watershed 

while considering inputs from two climate models (GFDL-ESM2M and IPSL-CMA-LR) and 

three societal storylines. Results showed that the foreseen rainfall reductions will have a 

significant impact on river flow and nutrients concentrations when compared to baseline 

conditions. River flow will expectably decrease 75%, while N and P concentrations in the 

river water will expectably increase by up to 500 and 200%, respectively. These differences 

are more evident for storylines that consider increasing pressures such as population and 

agriculture growth, poor management practices and diminishing technology evolution. 

Results are thus indicative of a possible future outcome and may provide guidelines for 

defining preventive measures to minimize the effect of climate change and growth of 

environmental pressures in the Sorraia River basin. 

Keywords: modelling; climate change; basin management scenarios; Sorraia River basin. 
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3.1 Introduction 

Agriculture is one of the main factors responsible for variation in the landscape of a 

region (Burgi et al. 2004). Unsustainable agricultural practices and excessive urban 

expansion have drastically affected the hydro morphological characteristics of river systems 

in the wake of climate change. The ever-increasing world population and globalisation of 

food products is one of the major reasons for the expansion of agroecosystems. High 

demands from the global food market have turned small and large-scale farmers towards 

excessive mechanized farming, the overuse of fertilizers and pesticides, as well as the 

unsustainable water abstraction for irrigation purposes. Diffused pollution from these 

sources has also degraded the water quantity and quality, thereby compromising vital 

ecosystem services and disrupting the local and regional hydrological balance (Hazell and 

Wood, 2008; Hering et al., 2015a, 2010; Segurado et al., 2018). A study conducted in Portugal 

observed that of the total water used in agriculture, about 80% is for irrigation consumption 

(EEA, 2012). 

In the future, pressures such as diffuse pollution or water abstraction are predicted to 

further increase (Alexandratos and Bruinsma, 2012; FAO, 2011; Ruttan and Alexandratos, 

2006; Sun et al., 2015), with climate change scenarios bringing great uncertainty to the water 

resources’ availability. According to the Intergovernmental Panel on Climate Change 

(IPCC)’s Fifth Assessment Report (IPCC and IPCC5 WGII, 2014), the Mediterranean climate, 

which is comprised of two contrasting seasons, i.e., the wet season with mild temperatures 

and the dry season with high temperatures, will show extreme variations due to climate 

change. This region will be highly affected by extreme events like droughts, floods and heat 

waves. These extreme events will greatly reduce the water availability, hydropower 

potential and crop productivity of the region. Additionally, health risks and the frequency of 

other stochastic events will also significantly increase. 

The study area, i.e., the Sorraia River basin, also lies under the influence of the 

Mediterranean climate. This basin is greatly modified by anthropogenic activities such as the 

construction of dams and weirs to respond to residential, agricultural and industrial 

demands (Cordovil et al., 2018). It has been predicted that climate change phenomena will 

further degrade the hydrological balance of the basin, leading to many socio-economic 

problems at both local and regional scales, further enhancing the water scarcity in the 

region. Hence, it is of utmost importance to accurately assess the impact of climate change 

on water resources to develop effective mitigation policies and a framework for 

management strategies. Better management strategies at the river basin level will not only 

maximize the benefits of irrigation and other anthropogenic modifications of the ecosystem 

but also minimize its impacts on water quantity and quality. Thus, the assessment of the 

impacts of climate change is essential to counter the effects of environmental stressors and 
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improve the ecosystem equilibrium (Gasith and Resh, 1999; Hosseinzadehtalaei et al., 2017; 

Ning et al., 2015; O’Neill et al., 2017). 

Hydrological models can forecast the outcomes of different management practices, 

thus providing guidance for water managers in defining cost-effective measures for future 

application (Brito et al., 2015; Hering et al., 2015b; Mateus et al., 2014; Simionesei et al., 2018; 

Williams et al., 2013). Although there are many unforeseeable events, the use of models in 

river systems is accepted as a standard practice with relevant information derived from 

them (Brito et al., 2018; Mateus et al., 2014; Segurado et al., 2018). A study carried out by 

Brito et al. (Brito et al., 2018) aimed at understanding the relationship between the 

eutrophication process of the downstream reservoir and soil erosion and nutrient losses 

related to flood events in a river basin (southern Portugal). Additionally, Mateus et al. 

(Mateus et al., 2014) conducted an integrated study using basin and reservoir models to 

depict the influence of river basins on the eutrophication of downstream water bodies, 

obtaining results that allowed to test different management practices that affect the reservoir 

trophic status. Watershed modelling is also an important part of the Portuguese River Basin 

Management Plans at the national level (APA, 2012). However, no such records exist that 

consider the effect of climate change on water and nutrient dynamics in the Sorraia River 

catchment area through hydrological modelling. This constitutes a significant gap in terms 

of knowledge. 

The aim of this study is to assess the impacts of climate change and management 

practices on the water quantity and quality of the Sorraia River using the hydrological 

model Soil Water Assessment Tool (SWAT) (Neitsch et al., 2011). The main objective is to 

predict the effects of multiple biotic and abiotic stressors at the basin scale (Hering et al., 

2015b). These stressors result from unsustainable anthropogenic activities and negatively 

affect the indicators of ecological quality and service. In addition, the study also has the 

following specific objectives: 

(i) to simulate the baseline conditions in terms of hydrology and nutrients (N 

and P) in the Sorraia River basin using the SWAT model (Neitsch et al., 2011); 

(ii) to simulate three distinct storylines which combine alternative trends in the 

evolution of the society and practices with climate change scenarios; 

(iii) to compare scenario results for accuracy and efficiency. 

The storylines and management scenarios considered in this study should serve as 

guidelines for defining mitigation measures in the catchment.  
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3.2 Materials and Methods 

3.2.1. Study Area 

This study was carried out in the Sorraia River (southern Portugal), the tributary of the 

Tagus River with the largest basin area, with ~7730 km2 (Lat: 38.59° to 39.50°; Long: −8.99° to 

−7.24°), and with a longitudinal length of ~155 km (Figure 1). The climate in the region is dry 

sub-humid, with dry and hot summers, and mild and wet winters. Records from 14 

meteorological stations (SNIRH, 2017) for a 20-year period (1996 to 2015) showed that the 

annual precipitation in the region varied from 200 to 900 mm, with the average of ~500 mm. 

The average monthly precipitation was ~50 mm, fluctuating up to 25 mm from April to 

September and 70 mm between October and March. The average annual surface air 

temperature was ~15 °C, varying from ~9 to ~22 °C. The reference evapotranspiration 

estimated according to Allen et al. (G. Allen et al., 1998) reached ~900 mm. The dominant 

soil types found in the region are Cambisols, Luvisols, and Regosols (IUSS Working Group 

WRB, 2014). Fluvisols are also found at higher concentrations in the downstream irrigated 

areas. 

 

Figure 3.1 The Sorraia River Basin. 

Two major reservoirs, Montargil and Maranhão, were built in the watershed during 

the second half of the twentieth century as a part of the Sorraia Valley Irrigation 

Implementation Plan. Currently, the Sorraia Valley is one of the largest irrigation areas in 
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Portugal, totalizing 16,000 ha, in which corn (Zea mays L.), rice (Oryza sativa  L.) and tomato 

(Solanum lycopersicum L.) predominate. The land use in the remaining area of the watershed 

is characterized by holm oak forest, rainfed cereals and pasture. 

In terms of human population, the Sorraia watershed has a total of 153,100 inhabitants, 

with a density of 20 inhabitants km−2 (INE, 2011). The population is mainly concentrated in 

three core cities: Ponte de Sôr (16,700 inhabitants), Samora Correia (17,123), and Coruche 

(19,950). According to the River Basin Management Plan (RBMP) (APA, 2016), hydro-

morphological changes, diffuse pollution, municipal discharges, flow regulation, and water 

abstraction are the main pressures in the basin. 

3.2.2. Hydrological Modelling 

The Soil and Water Assessment Tool (SWAT) Model 

The SWAT model  (Neitsch et al., 2011) is widely used to simulate watershed processes 

(Du et al., 2013; Koch  Stefan A4  - Bauwe, Andreas A4  - Lennartz, Bernd, 2013; Mateus et 

al., 2014; Santhi et al., 2006; Williams et al., 2013; Zhang et al., 2011). SWAT is a semi-

distributed watershed model focused on land management at a basin scale. The model splits 

the watershed into sub-basins that are assumed to be homogeneous in their Hydrologic 

Response Units (HRU), i.e., in terms of land use, soil and topographic characteristics. The 

relative straightforward formulation used in SWAT allows the model to run more 

demanding simulations within a reasonable time. The hydrology of the model is based on 

the daily water balance equation, as follows:  

SWt = SW0 +∑(Rday −Qsurf− Ea−Wseep−Qgw)

n

i=1

 
(

1) 

where SWt is the final soil water content (mm), SW0 is the soil water content at the 

initial time step (mm), Rday is the daily precipitation (mm), Qsurf is the surface runoff 

(mm), Ea is the actual evapotranspiration (mm), Wseep is the percolated water (mm), and 

Qgw is the return flow (mm), all referring to day i, which varies from 1 to the number of 

simulated days (n). In this study, the potential evapotranspiration rates were estimated 

using the Penman–Monteith method (G. Allen et al., 1998), with Ea being then dependent on 

soil water availability. Surface runoff was computed from daily precipitation using a 

modification of the Soil Conservation Service Curve Number (SCS-CN) method (USDA-SCS, 

1972). Groundwater recharge was estimated by combining a storage routing technique and a 

crack-flow model. The lateral flow was simulated using a kinematic storage method 

(Neitsch et al., 2011). 

The SWAT model can further simulate the nitrogen (N) and phosphorus (P) cycles. The 

N present in the soil is represented by five different pools, considering mineral and organic 

forms. The mineral N is divided into two pools: ammonia (NH4+) and nitrate (NO3−). The 

organic N is divided into three pools: active, stable (associated to the humic substances) and 
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fresh pool (associated to the crop residue). Molecular nitrogen is added naturally by 

biological and atmospheric nitrogen fixation. Anthropogenic activities and agricultural 

practices such as the use of fertilizers also act as sources of N in the environment. After 

fixation, N is converted to NH4+ in the soil and then consumed by plants in the form of NO3−. 

Mineralisation is considered by the fresh organic pool associated with crop residues and the 

active pool associated with soil humus. At harvest, the remaining fraction of crop residues is 

incorporated into the first soil layer. N is removed from the soil through volatilisation, 

denitrification, erosion, and leaching (in the NO3− form). The total amount of NH4+ lost by 

volatilisation or nitrification is calculated considering the NH4+ amount and environmental 

factors. The SWAT code calculates the denitrification process according to the soil carbon 

and nitrate source, a rate coefficient, and different environmental factors such as 

temperature and soil water content. The denitrification process occurs in anaerobic 

conditions. In the case of the phosphorus cycle, the model includes three inorganic P pools 

(solution, active, and stable) and three organic P pools (active, stable and fresh). The fresh 

organic pool is associated with crop residue and microbial biomass, while the active and 

stable organic pools are associated with the soil humus. The sum of the six pools represents 

total soil P. P is simulated considering the supply and demand during plant growth. Soluble 

and organic forms can be removed from the soil via mass flow (runoff). The amount of 

soluble P removed in runoff is predicted using solution P concentration in the top 10 mm of 

the soil profile, the runoff volume, and a partitioning factor. Sediment transport of P is then 

simulated with a loading function (Neitsch et al., 2011). 

In this study, the SWAT model was applied to the Sorraia basin using the ArcGIS 

extension from ESRI (Redlands, CA). The model application relied on available 

Geographical Information System maps for topography (SRTM), land use maps from Earth 

Observation (GSE Land M2.1) and soil maps and data from Cardoso (Cardoso , 1965). Daily 

discharge data provided by the reservoirs’ manager (ARBVS—Farmers Association from the 

Sorraia Valley) were used in the model from 1996 to 2015. Meteorological time series were 

downloaded for the basin area from the National Water Resources Institute website 

(SNIRH). The input data considered for the present conditions (hereafter referred to as the 

baseline) are summarized in Table 3.1. In order to stabilize the model conditions, the period 

between 1996 and 2000 was considered as the warm-up period, and the baseline simulation 

was defined for the period 2001–2015. 
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Table 3.1 The input data used in the Soil Water Assessment Tool (SWAT) model application . 

Data Type Source Data Description Resolution 

Topography 

Shuttle Radar Topography 

Mission (SRTM) 

NASA 

- 90 m 

Soil type Cardoso (Cardoso, 1965) Soil physical properties 1:25,000 

Land Use GSE Land M2.1 Land use classification 20 m and 300 m 

Meteorology 
Serviço Nacional de Informação 

dos Recursos Hídricos (SNIRH) 

1996–2015 

Precipitation, 

temperature, relative 

humidity and wind 

speed 

Daily time series 

Calibration and Validation 

The SWAT model was calibrated by manually modifying one parameter at a time, 

considering the most sensitive parameters that determined the best results for simulating 

daily/monthly river flows. The hydrograms were analysed, and the parameters that affected 

flow peaks and baseflow were selected and modified until deviations between the model 

outputs and measured flow data were minimised (Table 3.2). The previously calibrated 

parameters were then validated by comparing the results of the simulations with an 

independent dataset. Model calibration was thus performed for the period between 2001 

and 2006, while the validation exercise was carried out from 2006 to 2015. 

 

Table 3.2 The values of the calibrated parameters used in the SWAT model (parameter, description 

and default according to Neitsch et al., 2011). 

Parameter Description Default Calibrated Value 

CN2 
SCS runoff curve number for 

moisture condition II. 
25 to 92 80 to 92 

ALPHA_BF Baseflow alpha factor (1/days). 0.048 1 

GW_Delay Groundwater delay time (days) 31 3 

SOL_AWC 
Available water capacity of the soil 

layer (mm H2O/mm soil). 
0.11–0.14 −40% 

SOL_ZMX 
Maximum rooting depth of soil 

profile. (mm). 
- 500 

SOL_Z1 
Depth from the soil surface to the 

bottom of the first layer (mm). 
300 to 800 

slope 0–3%, to 800 

slope 3–8%, to 500 

slope 8–9999%, to 300 

SOL_Z2 
Depth from the soil surface to the 

bottom of the second layer (mm). 
300 to 800 

slope 0–3%, to 1000 

slope 3–8%, to 800 

slope 8–9999%, to 500 

 

Discharge data from two monitoring stations were used for model calibration and 

validation. Moinho Novo (Lat. 39.228°; Long. −8.029°) and Ponte Vila Formosa (Lat. 39.216°; 

Long. −7.784°) were selected as they are not significantly influenced by the operation of 

existing hydraulic structures. To evaluate the nutrients’ concentration, the monitoring 
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station at Ponte de Coruche (38.956°; −8.524°) was considered (SNIRH, 2018). However, its 

location and the monitoring interval of measured values (usually 15 days to 1 month) 

hindered the representativeness of the monitoring record. 

The goodness-of-fit indicators adopted for comparing model outputs with measured 

flow data were the coefficient of determination (R2), the root mean square error (RMSE), the 

Nash-Sutcliffe model efficiency coefficient (NSE (Nash and Sutcliffe, 1970)), and the Model 

Bias (Bias). An R2 value close to 1 indicates that the model explains the variance of 

observations well. RMSE values close to zero indicate small estimation errors and good 

model predictions. Bias was defined as the average difference between the estimator and the 

true value. Bias values close to zero indicate no under or over-estimation of the measured 

results. NSE values close to 1 indicate a perfect match of modelled discharge to the observed 

data, hence, indicating that the model predictions are good. On the contrary, when NSE is 

very close to 0 or negative, there is no gain in using the model. 

For N and P, comparison was focused on the magnitude of the simulated and observed 

values due to data limitation, considering only R2 and Bias indicators. 

Storylines 

The storylines defined in this study followed the framework developed within the 

Managing Aquatic Ecosystems and Water Resources Under Multiple Stress Project-MARS 

(Feld et al., 2016; Hering et al., 2015b). Here, the storylines are defined as a combination of 

societal and climate scenarios. Three storylines were considered by combining the work of 

O’Neill et al. (O’Neill et al., 2014) and Riahi et al. (Riahi et al., 2017). These authors defined 

Shared Socioeconomic Pathways (SSP’s) as reference scenarios describing plausible 

alternative trends in the evolution of society and ecosystems over a century timescale in the 

absence of climate change or climate policies. Storylines also considered Moss et al. (Moss et 

al., 2010) who developed Representative Concentration Pathways (RCPs) for greenhouse 

emissions. RCP 4.5 assume that greenhouse gas emissions will peak around 2040 followed 

by a decline, while RCP 8.5 considers that emissions will increase throughout the 21st 

century. 

Climate data considered in this study, such as the surface air temperature and 

precipitation, was extracted from the Inter-Sectoral Impact Model Intercomparison (ISI-MIP) 

project as it provided the best temporal and spatial resolution for the study area. In the ISI-

MIP project, the bias-corrected time-series of surface air temperature and precipitation were 

downscaled at a 0.5° resolution (Warszawski et al., 2014). Following the IPCC’s Fifth 

Assessment Report, the ISI-MIP project run specific climate models to obtain data (Wu et al., 

2017), which included five of the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

Global circulation models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-

CHEM and NorESM1-M). 

As established by Nerc et al. (Nerc et al., 2018) and Birk et al. (Birk et al., 2018), the 

storylines considered in this study are the following (Figure 3.2): 
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Figure 3.2 The schematic description of the modelling approach and considered scenarios (IPSL, IPSL-

CM5A-LR model; GFDL, GFDL-ESM2M model; RCPs, Representative Concentration Pathways, STL, 

storylines). 

 

Storyline 1 (STL1): Techno World. It represents fast global economic growth, 

characterised by a rapid technological development but with high energy demands and no 

real drive to enhance or ignore the health of natural ecosystems. This world is based on a 

combination of SSP-5 which consider a conventional development and low population 

(O’Neill et al., 2014) and climate scenario RCP 8.5 (Moss et al., 2010); 

Storyline 2 (STL2): Consensus world. It is a world in which the actual policies continue 

after 2020. The growth of economy keeps to the same pace as now, but with awareness for 

environment preservation. This world is based on a combination of SSP-2 which is 

considered as the intermediate stage (O’Neill et al., 2014) and the climate scenario RCP 4.5 

(Moss et al., 2010); 

Storyline 3 (STL3): Survival of the fittest. It represents a fragmented world, driven by 

the individual interest of countries, with fast economic growth in NW Europe but with 

recessions in other regions; with minimal or no investment and effort in environmental 

protection, conservation and restoration. This world is based on a combination of SSP-3, 

which consider a rapid technology for fossils, high demand and high economic growth 

(O’Neill et al., 2014) and climate scenario RCP 8.5 (Moss et al., 2010). 

The two climate models adopted for each climate scenario (Figure 2) were: 

GFDL-ESM2M (Dunne et al., 2013, 2012): RCP 4.5 was used in Storyline 2 (hereafter 

referred as STL2 GFDL), and RCP8.5 was used in Storyline 1 (STL1 GFDL) and Storyline 3 

(STL3 GFDL); 
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IPSL-CM5A-LR (Dufresne et al., 2013): RCP 4.5 was used in Storyline 2 (STL2 IPSL), 

and RCP8.5 was used in Storyline 1 (STL1 IPSL) and Storyline 3 (STL3 IPSL). 

GFDL and IPSL were adopted in this study as they give results close to the ISI-MIP 

median for the Western Europe region (Grizzetti et al., 2014). These two models differ in 

terms of the atmospheric prognostic state and of the spatial resolution of their atmospheric 

grid (2.5° lon. by 2.0° lat. for GFDL, and 2.5° lon. by 3.75° lat. for IPSL). Further conceptual 

differences between the GFDL and IPSL models, and the downscaling of variables at the 

basin-scale acquired from the outputs of these two models are given in Warszawski et al. 

(Warszawski et al., 2014) and references therein. Bias-corrected time-series of air 

temperature and precipitation downscaled at a 0.5° resolution (Hempel et al., 2013) were 

considered. Additional bias correction for the Sorraia basin was applied on precipitation 

(Figure 3.3) and surface air temperature (Figure 3.4) values following Shrestha (Shrestha, 

2015) and Shrestha et al. (Shrestha et al., 2017) and considering the measured data from 

2006–2015. This is a statistical downscaling method known as Linear scanning bias 

correction based on the average difference between monthly observed and historical time 

series for the same period. 

 

Figure 3.3 The annual average precipitation (mm) for the baseline conditions and climate scenarios: 

(a) timeline 2030; (b) timeline 2060. For clarification on the modelled scenarios . 
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Figure 3.4 The average, maximum, and minimum daily temperature (°C) for the present conditions 

(baseline) and climate scenarios: (a) and (c) timeline 2030; (b) and (d) timeline 2060. For clarification 

on the modelled scenarios. 

 

Two distinct temporal intervals were set up to run the simulations: 2030 (defined as a 

10-year average from 2025 to 2034) and 2060 (defined as a 10-year average from 2055 to 

2064). Thus, the term “climate change” refers here only to decadal changes. The period 1996–

2015 was selected as a reference for the baseline simulation (present condition). 

The downscaling of the socio-economic factors and foreseen management practices 

change in the Sorraia catchment was performed with the help of local water board 

stakeholders (Associação de Regantes e Beneficiários do Vale do Sorraia). Therefore, each 

storyline was naturally translated into quantitative data assuming that the Mediterranean 

climate imposes additional stress on the agriculture (Grizzetti et al., 2014). This additional 

stress was defined in terms of management practice changes, namely on the amount of 

fertilizer and irrigation applied to crops (Table 3). That assumption considered that in a 

changing environment, with temperatures increasing, higher irrigation needs are required to 

fulfil crop requirements. Additionally, higher temperatures lead to higher mineralisation 

rates and, thus, higher use of fertilizers. It also considered that higher usage of fertilizers and 

irrigation lead to larger diffuse pollutions from agricultural fields and greater environmental 

risk. Model inputs were thus related to the level of agriculture intensification and the 

environmental protection awareness considered in each Storyline. Fertilizers were applied to 
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prevent nutrient stress by plants. The percentage variation (increase or decrease) defined in 

Table 3.3 for each storyline and timeline was applied on the baseline values and used as an 

input in the model. 

 

Table 3.3 The input values used for simulating the storylines in the Soil Water Assessment Tool 

(SWAT). 

Storyline Timeline Management Practices Variation (%) Baseline Amount 

STL1 

2030 
Fertilization (kg/ha) 

10+ 
492 

541 

2060 15+ 566 

2030 
Irrigation (mm) 

10− 
430 

387 

2060 15− 366 

STL2 

2030 
Fertilization (kg/ha) 

10− 
492 

443 

2060 15− 418 

2030 
Irrigation (mm) 

20− 
430 

344 

2060 25− 323 

STL3 

2030 
Fertilization (kg/ha) 

30+ 
492 

640 

2060 35+ 664 

2030 
Irrigation (mm) 

30+ 
430 

559 

2060 35+ 581 

 

3.3 Results and Discussion 

3.3.1. Model Calibration/Validation 

Model calibration was carried out considering the period between 2001 and 2006, and 

validation was performed considering the period between 2006 and 2015. The statistical 

indicators obtained after comparing the daily and monthly simulated and measured flow 

values at the selected monitored stations are presented in Table 3.4. At Moinho Novo, the R2 

value of 0.71 for monthly data shows that a considerable proportion of variability of the 

observed data was explained by the model (Table 3.4 and Figure 3.5). The RMSE value of 6 

m3/month indicates a small error of model estimates, while the NSE value of 0.71 indicates 

that the residual variance results were much smaller than the measured data variance (Table 

4 and Figure 5). The comparison of daily values produced, as expected, worse results, with 

errors being mostly minimized during the monthly analysis due to data aggregation. For the 

validation period, the indicators were found to be similar, indicating a reasonable calibration 

of model parameters when considering all the uncertainties related to measurements. 

  



53 

 

Table 3.4 The daily and monthly flow statistics at Moinho Novo and Ponte Vila Formosa. 

Statistics 

Moinho Novo Ponte Vila Formosa 

Calibration Validation Calibration Validation 

Daily Monthly Daily Monthly Daily Monthly Daily Monthly 

Obs. Average 6.05 6.71 7.57 7.07 3.17 3.31 5.68 5.61 

Mod. Average 6.95 7.04 6.50 5.81 6.09 6.27 5.22 5.19 

Bias 0.90 0.33 −1.07 −1.27 2.93 2.97 −0.46 −0.42 

RMSE 13.1 6.00 16.6 7.51 12.61 6.04 15.21 5.93 

R2 0.41 0.71 0.41 0.68 0.31 0.58 0.24 0.54 

Model Efficiency 0.22 0.71 0.39 0.67 −3.05 −1.26 0.11 0.40 

 

 

 

Figure 3.5 The monthly average flow (mm) in Moinho Novo: (a) calibration period; (b) validation 

period; and Ponte Vila Formosa location; (c) calibration period; (d) validation period. 

3.3.2. Scenario Analysis 

Water Quantity 

After calibration and validation, the SWAT model was used to evaluate the developed 

storylines. Climate models showed a decrease in precipitation from 400 mm year−1 to an 

average of 264 mm year−1 on both timelines (Figure 3.6). As a result, the simulated scenarios 

showed a substantial reduction of monthly flows for the 2030 and 2060 timelines (Figure 

3.7). Flow reduction evidenced a non-linear relationship between precipitation and monthly 

river flow averages. This resulted from the uncertainty associated with climate models, 

particularly in the forecast of extremes events (Figure 3.6). The monthly average flow for the 

baseline simulation was 42 m3 s−1 (Table 3.5), while the IPSL model showed a decrease by 
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half of this value in the timeline 2030 (to about 19 m3 s−1), and a further decrease in the 

timeline 2060 (to 10 m3 s−1). More severe results were obtained with the GFDL model for the 

same scenarios, predicting a decrease in the precipitation average to half of the present 

value, which resulted in monthly flow averages of 4.5 m3 s−1 and 2.5 m3 s−1 for the timelines 

2030 and 2060, respectively (Table 3.5). Moreover, the increasing temperature trend 

predicted by both climate models combined with decreasing precipitation further led to 

more hazardous agricultural practices for the environment, with irrigation and fertilizer 

requirements increasing as considered in STL1 and STL3. Even for the scenario with more 

sustainable agricultural practices (STL 2), the changes in the climate variables had the same 

severe effect on river flow (Figure 3.6). For both climate scenarios, the decrease in irrigation 

in STL2 resulted in small differences in the monthly flow average when compared with the 

previous results (Table 3.5). 

 

Figure 3.6  The monthly average precipitation (mm) for each climate model (bars), and th e number of 

daily precipitation events > 10 mm (−) for all period (symbols), for each timeline. 

 

Figure 3.7 The monthly average of modelled river flow (m3 s−1) for each storyline and baseline. For 

clarification on the modelled scenarios. 
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Table 3.5 The monthly averages for river flow (m3 s−1), total N (mg N L−1), and total P (mg P L−1) in 

each scenario. 

Monthly 

Average 
Baseline 

STL1 STL2 STL3 STL1 STL2 STL3 STL1 STL2 STL3 STL1 STL2 STL3 

2030 GFDL 2030 IPSL 2060 GFDL 2060 IPSL 

River flow 
42.3 4.1 4.5 4.1 18.8 18.2 18.8 2.5 2.6 2.5 8.4 9.7 9.8 

(m3 s−1) 

Total N 
0.7 3.3 2.2 3.9 1.1 0.9 1.2 5.5 2.6 6.2 1.4 1.2 1.5 

(mg N L−1) 

Total P  
0.2 0.1 0.1 0.1 0.3 0.3 0.4 0.2 0.2 0.2 0.2 0.2 0.2 

(mg P  L−1) 

The simulated storylines focused on distinct management practices in the watershed. 

Changes were associated with climate change models IPSL and GFDL developed for this 

purpose. All simulated scenarios showed a significant decrease in water quantity, clearly 

visible in the reduction of river flow (Figure 3.7). This outcome was a direct consequence of 

the significant decrease in precipitation generally estimated by all climate models, especially 

for Mediterranean countries, due to the increased anticyclonic circulation that yields 

increasingly stable conditions, and to a northward shift of the Atlantic storm track (Erol and 

Randhir, 2012; Giorgi and Lionello, 2008; IPCC and IPCC5 WGII, 2014). Similarly, Bucak et 

al. (Bucak et al., 2017) predicted flow variations between +18 and −59% for the Beyşehir 

watershed (Turkey), depending on the climate scenario considered. Pascual et al. (Pascual et 

al., 2015) reported the largest reductions (34%) in mean streamflows (for 2076–2100) to be 

expected in the headwaters of two humid catchments in Catalonia (Spain), while lesser 

variations (25% of mean value for 2076–2100) were to be expected in a drier area. 

Additionally, in all three catchments, the most notable projected decreases in streamflow 

were observed in autumn (50%) and summer (30%). The largest reductions in the Sorraia 

river flow were associated with agriculture activities, namely irrigation, which, combined 

with climatic change, augmented the problem. Therefore, while water availability in several 

Mediterranean basins is mostly conditioned by precipitation, the results of this study in the 

Sorraia River basin show that other processes related to agricultural practices also contribute 

to water scarcity, such as evapotranspiration and irrigation. 

Water Quality 

In the Sorraia basin, irrigated crops are traditionally sown during mid-April/May and 

harvested in mid-September/October (Cameira et al., 2007; Ramos et al., 2017). This leads to 

an increase of Total N concentration in the Sorraia River during those periods as noticed in 

all storylines, especially in STL3 (Table 3.5 and Figure 3.8), which results from the water 

reduction in the basin and increased use of fertilizers (STL1 and STL3). Total N 

concentrations were perceptibly higher when using the GFDL climate model due to the 

lower precipitation amount predicted. An increase of the total N concentration in the river 

during the crop growth periods was also predicted due to nutrient runoff and leaching. The 
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most marked increase was observed immediately after the harvest season (Figure 3.8), 

coinciding with the mineralisation of crop residues and the beginning of the rainy seasons. 

The increase of soil water content further promoted nitrate leaching, as well as losses by the 

lateral flow. Therefore, precipitation reduction played a fundamental role in the future 

projections of catchment dynamics. 

 

 

Figure 3.8 The monthly average of modelled Total N concentration (mg N L−1) for each storyline and 

baseline period: (a) 2030-GFDL; (b) 2060-GFDL; (c) 2030-IPSL; (d) 2060-IPSL. For clarification on the 

modelled scenarios. 

 

The increase of Total N concentration in all storylines was drastic when compared with 

the present conditions (0.7 mg N L−1) (Table 3.5). For the GFDL scenarios, despite the 

agriculture practices outlined in STL2, there was a predicted increase of Total N 

concentration in the Sorraia River up to 2.2 mg N L−1 in the 2030 timeline, and up to 2.6 mg 

N L−1 in the 2060 timeline. For the STL1 and STL3, an average of 3.6 mg N L−1 was computed 

for the timeline 2030, and an average of 5.9 mg N L−1 was computed for the timeline 2060. 

For the IPSL model scenarios, the increase was not so outstanding, especially for STL2, 

where the monthly averages in the timelines of 2030 and 2060 were predicted to be 0.9 and 

1.2 mg N L−1, respectively. For this model, an average of 1.2 mg N L−1 was observed for the 
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timeline 2060 (Table 3.5). 
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The projected increase of N concentration in the river resulted from the progressive 

use of this nutrient as fertilizer in most scenarios, but also as a consequence of natural 

processes occurring in the soils. This outcome is also visible in the more optimistic scenario 

(STL2), where the negative impact of water flow reductions on water quality was also high. 

Nitrate was the most abundant form of N simulated in the river (Figure 3.9), also 

contributing significantly towards this outcome were nitrate high solubility and leaching 

susceptibility (Cameron et al., 2013; Lamb et al., 2017), mostly during the periods of higher 

precipitation, and the type of fertilizers used by farmers (Ramos et al., 2012). 

 

 

Figure 3.9. The monthly evolution of the N forms (mg N L−1) for each storyline (timeline 2060 

and GFDL climate model) and baseline condition: (a) Nitrate; (b) Ammonia; (c) Organic N; and 

(d) Nitrite. 

The most pronounced increase in the nutrients concentration was found to occur 

during the autumn/winter period, after the harvesting of corn in irrigated areas 

(September/October). The high temperature and low soil moisture values predicted during 

this time of the year enhanced the mineralization of crop residues as observed by the 

increase of simulated organic N in the river (Figure 3.9). Nitrite was the least abundant form 

of N as its oxidation process occurred very fast. The significant increase in N and P may 

enhance the eutrophication process, thus contributing towards the degradation of water 

quality (Brito et al., 2018). 
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different Storylines and climate models. On average, most of the scenarios led to similar 

monthly concentrations when compared with the present (0.2 mg P L−1). In the 2030 timeline, 

a decrease of the Total P concentration in the Sorraia River to 0.1 mg P L−1 was predicted for 

all storylines when using the GFDL model, mainly due to the significant decrease in the 

precipitation amount which reduced runoff and soil erosion, thus decreasing the transport 

capacity of P in the basin. In the 2060 timeline, an increase of the Total P concentration to 0.3 

mg P L−1 in the STL 1 and STL2, and a double-fold increase (0.4 mg P L−1) in the STL3 were 

predicted, in line with the literature (Serpa et al., 2017). Serpa et al. (Serpa et al., 2017) found 

a similar decrease of water quality in the Vale do Gaio River (Portugal), located a few 

kilometres south of the Sorraia River basin, with P concentrations increasing from +29% to 

+93% depending on the storylines adopted. All climate models and Storylines showed the 

same concentration averages for the 2060 timeline when comparing with the present 

monthly average (0.2 mg P L−1). However, the major differences observed between the 

results from GFDL and IPSL climate models may result from extreme precipitation events as 

shown above (Figure 3.7). 

 

 

Figure 3.10. The monthly average of the modelled Total P concentration (mg P L−1) for 

each storyline and baseline: (a) 2030-GFDL; (b) 2060-GFDL; (c) 2030-IPSL; (d) 2060-IPSL. 
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to be removed from agricultural fields. As shown in Figures 3.10 and 3.11, P concentrations 

are expected to exhibit a different behaviour from N in all storylines. However, the fact that 

P concentrations show a slight increase despite the decrease in precipitation suggests that its 

continued application will have a significant impact on water quality. 

 

 

Figure 3.11. The monthly evolution of the P forms (mg P L−1) for each storyline (timeline 

2060 and GFDL climate model) and baseline: (a) Dissolved P; and (b) Organic P. 

Results have also shown that the decrease of water in the basin had a significant 

influence on the quality of water in the river. Results for Total N and P concentrations 

(Figure 3.8 and Figure 3.10) further suggest a significant deterioration of water quality in the 

Sorraia River, particularly with respect to the Total N. 
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3.4 Conclusions and Future Research 

The modelling approach developed in this work highlighted possible cumulative 

impacts of future climatic changes in the Sorraia River basin by considering the expected 

changes in precipitation, temperature, and human activities. A significant decrease in 

precipitation is expected over the watershed for the near future (between 25% and 50%). It is 

likely that this decrease will lead to an increase in irrigation and fertilization needs over this 

basin by 35%. The water quantity is predicted to fall approximately by up to 75%, while 

water quality shows an unbalanced deterioration, with nutrient concentrations predicted to 

increase up to 200% for P and up to 500% for N. Such a rise in nutrient concentration is 

observed to be a consequence of the increased use of fertilizers and decrease in water 

availability in rivers. 

The results show how societal and especially climatic changes can affect river water 

quantity and quality in the study basin and can be considered as a starting point for defining 

appropriate management plans to counteract such negative impacts. The SWAT model can 

be further explored to test the effects of management practices and the degree of stress they 

introduce on the environment, thereby contributing to a cost-effective adaptive management 

practice. For instance, the use of winter crops with minimum water requirements, the 

implementation of no-till practices to improve soil structure and soil infiltration rates, the 

use of cover crops for reducing soil water evaporation or the establishment of more resilient 

cropping systems to cope with water scarcity may allow future impacts to be minimised at 

the basin level. 
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Chapter 4 An Integrated Modelling Approach to 

Study Future Water Demand Vulnerability in the 

Montargil Reservoir Basin, Portugal 

 

The material on which this chapter is based has been previously published in Almeida, C.; 

Ramos, T.B.; Sobrinho, J.; Neves, R.; Proença de Oliveira, R. An Integrated Modelling Approach to 

Study Future Water Demand Vulnerability in the Montargil Reservoir Basin, Portugal. 

Sustainability 2019, 11, 206. 

 Abstract 

This paper describes an integrated modelling approach to study water use vulnerability in a 

typical Mediterranean basin under different climate change projections. The soil water 

assessment tool (SWAT) and the MOHID (from modelo hidrodinâmico) Water model were 

used to evaluate the impacts of two climate scenarios (GFDL-ESM2M and IPSL-CM5A-LR) 

on water availability in Montargil’s basin and reservoir (Portugal) during two decadal 

timelines (2030 and 2060). Reservoir performance metrics were estimated considering also 

two water demand scenarios: an average of the water demand in the last 10 years; and the 

largest annual demand of the last 10 years. The SWAT model results showed a future 

decrease of inflows to the reservoir, with its volumetric reliability decreasing from 100% in 

the historical simulation to about 60–70% in the IPSL-CM5A-LR climate scenario and 40–

50% in the GFDL-ESM2M climate scenario. The time reliability also decreased to less than 

30%, while the resiliency for the water demand decreased to an average 20–35% for both 

climate scenarios. These impacts indicate the importance of the managing systems in an 

integrative mode to prevent water resources reduction in the region. 

Keywords: integrating modelling; climate change; water availability; vulnerability; 

Montargil; basin; reservoir. 
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4.1 Introduction 

In the Mediterranean region, water resources are scarce and exhibit large seasonal and 

intra-annual variability. Water storage is essential for fulfilling water demand, for producing 

energy and for controlling flood and drought events. The sustainability and development of 

many economic activities in the region depends on water storage in reservoirs, with the 

construction of infrastructures in river valleys also leading to changes in land use that 

influence the entire water balance and water quality at the basin scale. 

Basins are subjected to multiple stressors (Hering et al., 2015; R. Townsend et al., 2008; 

Segurado et al., 2018), with climate change emerging as a major concern in river water 

management. In the Mediterranean countries, surface air temperature is expected to increase 

while the annual amount of precipitation is expected to decrease (IPCC and IPCC5 WGII, 

2014; Olesen and Bindi, 2002; Ragab and Prudhomme, 2002; van Vuuren et al., 2011). These 

changes will result in an increasing frequency of extreme climatic events, including droughts 

(Giorgi and Lionello, 2008; Iglesias et al., 2007). Examples of these extreme events are 

already visible in Portugal, where severe drought events occurred during 2005 and 2012 

(Botelho and Ganho, 2010). As a result, surface and ground water availability is projected to 

decrease, especially in the centre and south of Portugal (Nobrega, 2006), stressing the need 

for developing strategies for adapting water resources management to climate change. 

In southern Portugal, several reservoirs were built in the middle of the 20 th century, 

mainly for irrigation. New irrigated areas were created, with crops having their growing 

season in the summer season when evapotranspiration needs are higher (Valverde et al., 

2015). This production system is highly dependent on water stored in reservoirs during the 

rainy season and on the existence of hydraulic structures to distribute water. 

In the past, infrastructure planning and operations, namely reservoir water 

management, was based on the analysis of historical records, which were assumed to be 

stationary. In the context of climate change that may not be the most appropriate strategy. 

Instead, a growing number of studies have pointed to the importance of integrating 

mathematical models in the decision-making process (Brito et al., 2018a; Silva-Hidalgo et al., 

2009; Skoulikaris, 2008). Mathematical models can provide managers with an integrative 

analysis of the processes and time variables concerning the basin status (Labadie, 2006; 

Lettenmaier D.P., Dennis P., Alan F. Hamlet, Tazebe B., 2008), which otherwise would be 

difficult to assess only with available monitoring results. Models can also provide, directly 

or indirectly, performance indicators related to water resource use that can be used to 

evaluate its operating rules, determining the supply guarantee, the vulnerability of water 

needs, and the system’s resilience (Hashimoto et al., 1982; Jinno, 1995). 

By considering climate change and related uncertainty, those modelling tools can be 

used for predicting water availability in the near future. This results in a direct benefit when 

estimating inflows or planning of best operation practices, particularly in basins where 

agriculture is heavily dependent of reservoirs supply. Additionally, while most of the 
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uncertainty associated to long-term hydrological predictions refers to the ability of climate 

model to forecast future precipitation for the river basin, climate models have been 

consistent in the projected trends allowing to draw reliable future scenarios. 

The complexity of the dynamics and properties of each water body such as lakes, 

rivers or coastal areas, or even artificial systems such as reservoir or urban systems further 

require the integration of mathematical models for improving water resources management. 

Thus, extensive integration of mathematical models has been performed during the last 

decades. For example, Brito et al. (Brito et al., 2015) integrated the basin (soil and water 

assessment tool (SWAT) model) and reservoir model (CE-QUAL-W2) to study the water 

quality and to test different management scenarios to reduce nutrient loads in an eutrophic 

reservoir in southeast Portugal. Brito et al. (Brito et al., 2015) developed an operation 

management tool for simulating flows from the main watersheds of the Iberia Peninsula, 

where the basin model MOHID Land (from modelo hidrodinâmico) were integrated in the 

coastal model MOHID Water. 

In this study, two climate models were used as input to a basin model, which in turn 

was integrated into a reservoir model. The main objective was to investigate water resources 

availability in the Montargil reservoir (southern Portugal) and respective vulnerability 

under future climate scenarios. The specific objectives were: (1) to assess and model climate 

change scenarios over the study area; (2) to determine the water balance and flows at the 

basin scale; and (3) to analyse the vulnerability of the reservoir while considering those 

future scenarios. This study is particularly original in performing an integrated analysis of 

water resources availability in the Mediterranean region under the context of climate 

change. This study further promotes the development of tools to support sustainable water 

resources management in the study area. 

 

4.2 Materials and Methods  

4.2.1. Study Area 

This study was carried out in the Montargil Reservoir, located in the Sôr River sub 

basin, which is part of the Sorraia River (southern Portugal), the tributary of the Tagus River 

with the largest basin area (~7730 km2) (Figure 4.1). Montargil, with its drainage area of 

~1200 km2, is one of the largest Portuguese reservoirs on a dry area. This reservoir is part of 

the Sorraia Valley watering system with two other reservoirs: Magos and Maranhão. The 

system was created between 1951 and 1959 and benefits a total of 16,351 ha of irrigated 

agricultural land in six municipalities. The watering system is managed by the Farmers 

Association of the Sorraia Valley (ARBVS) since 1970. Thus, while each reservoir has an 

independent drainage area, they are managed together according to water availability. 

Over the last years, the Montargil reservoir has been increasingly used for recreational 

purposes, benefiting from short distances to major urban habitation areas (about 100 km 
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from Lisbon) and warm water temperatures during the bathing season. The reservoir has 

also been used for electric power generation, fishing, and water sports. The climate in the 

region shows two typical seasons, one with dry and hot summers, and another with mild 

and wet winters (Figure 4.2).  

 

Figure 4.1. Location of the Montargil sub basin and reservoir . 
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Figure 4.2. Monthly average temperature and precipitation in Montargil basin (average of 

last 20 years). 

The main land uses in the Montargil basin area are forest (63%), range-grass (22%), 

agriculture (8%), orchard (3%), urban and industrial (1%) and pasture (1%) (Mateus et al., 

2009) (Figure 4.3). The elevation ranges from 45 to 358 m a.s.l (Figure 4.3). The dominant soil 

types are Cambisols, Luvisols and Regosols (IUSS Working Group WRB, 2014). 

 

Figure 4.3. Digital terrain model and land use/land cover map in Montargil sub-basin. 
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The Montargil reservoir provides mainly water for irrigation, and to a less extent for 

industry purpose. The water level is thus regulated by irrigation water demand and 

depends on climatic conditions. Accordingly, the reservoir is filled between autumn and 

spring and the water is used gradually during the summer irrigation season (Figure 4.4). 

The outflow from the reservoir is controlled by several structures. The maximum reservoir 

capacity is about 164 hm3, with a water surface elevation of 80 m and minimum surface 

height of 30 m. The minimum water surface elevation acceptable for operation is 65 m above 

water surface elevation, which corresponds to ~143 hm3. 

 

Figure 4.4. Observed reservoir stored volume with missing values found (m3) and water 

surface elevation (m) during the last 28 years in the Montargil reservoir. 

4.2.2. Integrated Modelling Approach 

Figure 4.5 describes the framework of the integrated modelling approach considered in 

this study. The SWAT (Neitsch et al., 2011) was used for modelling flows at the basin scale. 

The basin modelling considered the digital terrain model (DTM), soil data, land use, and 

meteorology from historical data as inputs. The model was calibrated and validated by 

comparing simulated flows with measured data. The baseline simulation was defined for 

the period between 1996 and 2015. The SWAT model was calibrated manually for the period 

between 2001 and 2006, while the validation exercise comprised the period from 2006 to 

2015. Flow results from SWAT were then integrated as boundary conditions to the reservoir 

MOHID Water model (Neves, 1985). This model was calibrated and validated for simulating 

the elevation-volume curve, levels, and volumes during the historical period (Figure 4.5). 

After model validation, future scenarios were defined using projections from the GFDL-

ESM2M and IPSL-CM5A-LR climate models (Dufresne et al., 2013; Dunne et al., 2013) as 

boundary conditions to SWAT and MOHD Water. The description of each model can be 

found in the sections below. 
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Figure 4.5. Schematic description of the modelling approach considered: basin model, 

reservoir model and climate models integration; blue connections are related to baseline 

modelling, and yellow connections are related to scenarios . 

4.2.2.1. Basin Model 

TheSWAT (Neitsch et al., 2011) is a semi-distributed widely used model for simulating 

watershed processes and assessing land management practices at the basin scale using a 

daily time step. The SWAT model was already successfully calibrated/validated for 

simulating streamflow and nutrient dynamics in the Sorraia basin (Almeida et al., 2018; 

Segurado et al., 2018), with results providing the necessary basis for conducting this study. 

The model splits the watershed into sub-basins that are assumed to be homogeneous in their 

hydrologic response units (HRU), i.e., areas with homogeneous properties in terms of slope, 

land use, and soil type. The hydrology of the model relies on solving the water balance 

equation, as follows: 

SWt = SW0 +∑ (Rday−Qsurf −Ea− Wseep− Qgw)
t
i=1   

(

1) 

where SWt is the final soil water content (mm), SW0 is the soil water content at the 

initial time step (mm), Rday is the precipitation on day i (mm), Qsurf is the surface runoff on 

day i (mm), Ea is the actual evapotranspiration on day i (mm), Wseep is the percolated water 

on day i (mm), and Qgw is the return flow on day i (mm). 

Crop evapotranspiration is computed following the Penman Monteith method (G. 

Allen et al., 1998), and dependent on soil water availability. Infiltration and groundwater 

flow are computed based on empiric or semi-empiric formulations (as the Soil Conservation 
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Service (SCS) rainfall-runoff curves or soil-shallow aquifer-river transfer times). Details on 

individual simulation components can be found in Neitsch et al. (Neitsch et al., 2011). 

In this study, the SWAT model was applied to the Montargil sub-basin using the 

ArcGIS extension from ESRI (Redlands, CA, USA). Available geographic information system 

(GIS) maps of topography from Shuttle Radar Topography Mission (SRTM) with 90 m 

resolution, land use from GSE Land M2.1 with 20 and 300 m resolution (Mateus et al., 2009), 

and soils from Portuguese Soil maps and Land use Capacity at 1:25,000 scale (Cardoso, 

1965), were used. Climatic maps, including daily precipitation, temperature, relative 

humidity and wind speed were derived from the Portuguese National Institute of Water 

Resources (SNIRH) (SNIRH, 2017).  

4.2.2.2. Reservoir Modelling 

The present work was carried out using the hydrodynamic and biogeochemical three-

dimensional MOHID Water model (Neves, 1985). This model has been applied to a variety 

of locations subject to different conditions since its creation (Coelho et al., 1998; Deus et al., 

2013; Franz et al., 2016). The model consists of a set of modules interconnected using an 

object-oriented programming. Each module is responsible for the management of part of 

information, constituting a total of 40 modules developed over 3 decades of research work. 

In this study, the MOHID Water model was applied to the Montargil reservoir. The 

following modules were considered for simulating water variation dynamics in this study: 

Atmosphere, Geometry, Hydrodynamic, Interface Water Air, Turbulence and Discharges. 

The model grid resolution was 100 m × 100 m, and the topography map from the SRTM with 

90 m resolution was considered due to unavailability of the bathymetric map of the 

Montargil reservoir. As initial condition, the water level at the first day of the simulation 

was imposed from SNIRH (SNIRH, 2017). Meteorological data (velocity and wind direction, 

precipitation, solar radiation, air temperature and relative humidity) were obtained from 

SNIRH (SNIRH, 2017) and used as boundary conditions. The upstream river discharges 

computed earlier with the SWAT model were also used as boundary conditions. These were 

set to reach the reservoir on five locations (Figure 4.6), with the main river inflow reaching 

~48 m3/s (average of 10 years), while the four lateral smaller tributaries reached ~19 m3/s. 

Finally, the effluent reservoir discharge provided from ARBVS was considered as outflow, 

translating the water used for irritation purposes in the downstream area. 
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Figure 4.6. Location of the discharges from the soil and water assessment tool (SWAT) model, 

used as boundary condition to MOHID Water model. 

4.2.2.3. Climate Models 

The climate models adopted in this study were the GFDL-ESM2M (Dunne et al., 2013) 

and IPSL-CM5A-LR (Dufresne et al., 2013). These models followed the framework 

established by Nerc et al. (Nerc et al., 2018) and Birk et al. (Birk et al., 2018) during the 

Project “Managing Aquatic Ecosystems and Water Resources Under Multiple Stress—

MARS” (Feld et al., 2016; Segurado et al., 2018), where this work is embedded. In the MARS 

Project, three societal scenarios were developed and implemented in the Sorraia basin 

(Almeida et al., 2018), based mainly on agriculture practices and on the work of O’Neill et al. 

(O’Neill et al., 2017)and Riahi et al. (Riahi et al., 2017). These authors defined Shared 

Socioeconomic Pathways (SSPs) as reference scenarios describing plausible alternative 

trends in the evolution of the society and ecosystems over a century timescale in the absence 

of climate change or climate policies. The surface air temperature and precipitation time-

series were downscaled at a 0.5° resolution according to the The Inter-Sectoral Impact Model 

Intercomparison Project (ISI-MIP) project (Hempel et al., 2013; Warszawski et al., 2014). 

Differences between the GFDL and IPSL models and downscaling of variables at the basin-

scale acquired from the outputs of these two models are given in Warsawski et al. 

(Warszawski et al., 2014) and references therein. 

For the case of Montargil sub basin, this study took into consideration the storyline 

based on the combination of the Shared Socioeconomic Pathway-2 (SSP-2) defined as an 

intermediate stage in the evolution of the society and ecosystems over a century timescale 

(Riahi et al., 2017; Warszawski et al., 2014), and the Representative Concentration Pathways 

4.5 (RCP 4.5). According to Moss et al. (Moss et al., 2010), the RCP 4.5 assumes a greenhouse 

gas emission with peak around 2040 followed by a decline. 

Additional bias-correction for the study area was carried out in Almeida et al. 

(Almeida et al., 2018) and considered the temperature and precipitation historical data for 

the period between 2006 and 2015. The period from the last 20 years (1996–2015) was 

selected as a reference for the present condition (baseline simulation) and the two distinct 
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temporal intervals were set up to run the future simulations: 2030 (defined as a 10-years 

average from 2025 to 2034) and 2060 (defined as a 10-years average from 2055 to 2064).  

Both climate models show a decrease of precipitation when compared to the historical 

data from 1996 to 2015, here considered as the baseline condition (Figure 4.7), with the 

monthly average decreasing from ~22 to ~9 mm during the Spring/Summer season. Similar 

behaviour is observed during the Autumn/Winter season, with the GFDL model estimating 

monthly average decreases from ~59 mm to ~28 mm and ~25 mm for the 2030 and 2060 

timelines, while the IPSL model shows a decrease to ~35 mm and ~34 mm during the same 

timelines. Concerning temperature, predictions showed fluctuations of monthly values, with 

more extreme maximum and minimum values being noticed (Figure 4.8). 

 

Figure 4.7. Average monthly precipitation (mm) for the baseline conditions and climate 

scenarios. 
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Figure 4.8. Monthly temperatures (°C) for the baseline conditions and climate scenarios: (a) 

average, (b) maximum and, (c) minimum. 

 

4.2.3. Performance Indicators 

Several performance indicators were adopted to evaluate the system reliability, 

resiliency, and vulnerability based on monthly failure events registered in the Montargil 

reservoir. The reliability is the oldest and widely used indicator for assessing water 

resources systems performance. This was defined by Hashimoto et al. (Hashimoto et al., 

1982) as how often the system fails: 

Reliability = P{S ∈ NF}  
(

2) 

where P is the probability, S is the system state variable under consideration and NF is 

related to the non-failure state. The most recognized and applied definition uses the concept 

of failure which occurs when the system is unable to satisfy water needs. The time reliability 

can be estimated as: 

Reliability = 1-
∑ d(j)M

j=1

T
  

(

3) 

where d(j) is the duration of the failure event j, M is the number of failure events, and T 

is the total number of time intervals. The volumetric reliability is defined as the percentage 

of needs during the simulation period that were satisfied. 
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Resilience is defined as the measure how quickly the system returns to a satisfactory 

state once a failure has occurred. The resiliency provides an indication of the system’s 

capability to recover from a failure. Hashimoto et al. (Hashimoto et al., 1982) define 

resilience as a conditional probability: 

Resilience = P{S(t +1) ∈ NF | S(t) ∈ F} 
(

4) 

where S(t) is the system state variable. This definition of resilience is equal to the 

inverse of the mean value of the time the system spends in an unsatisfactory state, i.e., 

Resilience= {
1

M
∑ d(j)M

j=1 }
-1

  
(

5) 

where d(j) is the duration of the failure event j and M is the total number of failure 

events.  

Vulnerability indicators are used to assess the severity of failure when it occurs and 

was defined by Hashimoto et al. (Hashimoto et al., 1982) as: 

Vulnerability=∑ e(j).h(j)j=F   
(

6) 

where h(j) is the most severe outcome of the failure event j and e(j) is the probability of 

h(j) being the most severe outcome of a failure resulting into unsatisfactory state. Hashimoto 

et al. (Hashimoto et al., 1982) and Jinno et al. (Jinno, 1995) estimated posteriorly 

vulnerability as the mean value of the deficit events v(j) as: 

Vulnerability=
1

M
∑ v(f)M

j=1   
(

7) 
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4.3. Results and Discussion 

4.3.1. Basin Modelling 

Calibration and Validation 

The SWAT model calibration and validation for the Montargil sub basin was carried 

out by comparing simulated and observed flows at the Moinho Novo hydrometric station 

(Lat. 39.228°; Long. −8.029°). The SWAT parameters CN2, ALPHA_BF, GW_Delay, 

SOL_AWC, SOL_ZMX, SOL_Z1 and SOL_Z2 (Table 4.1) were thus modified until deviations 

between simulated and observed data were minimized. 

Table 4.1. Values of calibrated parameters used in the SWAT model (parameter, description and 

default according to Neitsch et al. (Neitsch et al., 2011)). 

Parameter Description Default Calibrated Value 

CN2 
SCS runoff curve number for moisture 

condition II. 
25 to 92 80 to 92 

ALPHA_BF Baseflow alpha factor (1/days). 0.048 1 

GW_Delay Groundwater delay time (days) 31 3 

SOL_AWC 
Available water capacity of the soil 

layer (mm H2O/mm soil). 
0.11–0.14 −40% 

SOL_ZMX 
Maximum rooting depth of soil profile. 

(mm). 
- 500 

SOL_Z1 
Depth from soil surface to bottom of 

first layer (mm). 
300 to 800 

slope 0–3%, to 800 

slope 3–8%, to 500 

slope >8%, to 300 

SOL_Z2 
Depth from soil surface to bottom of 

second layer (mm). 
300 to 800 

slope 0–3%, to 1000 

slope 3–8%, to 800 

slope >8%, to 500 

The statistical indicators obtained after comparing the monthly simulated and 

measured flow values at the Moinho Novo monitoring station were: the coefficient of 

determination (R2) of 0.71, the root mean square error (RMSE) value of 6 m3/month, and the 

Nash–Sutcliffe efficiency (NSE) value of 0.71. The R2 showed that a considerable proportion 

of variability of the observed data was explained by the model. The RMSE indicated a small 

error of model estimates. The NSE indicates that the residual variance resulted much smaller 

than the measured data variance (Figures 4.9 and 4.10). For the validation period, the 

indicators were found to be similar, indicating a reasonable calibration of model parameters 

when considering all uncertainties related to measurements (Figures 4.9 and 4.10). Similar 

performances of the SWAT model can be found in other watersheds of the same size in the 

Mediterranean region. For example, Briak et al. (Briak et al., 2016) simulated streamflow in 

the Kalaya watershed, northern Morocco, obtaining a NSE value of 0.76. Bucak et al. (Bucak 

et al., 2017) did the same for the watersheds of Lake Beyşehir, Turkey, producing R2 values 

from 0.38 to 0.78 and NSE values from 0.37 to 0.76. Also, Dechmi et al. (Dechmi et al., 2012) 

obtained high R2 and NSE values of 0.90 in the Del Reguero River watershed in northern 
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Spain, while Panagopoulos et al. (Panagopoulos et al., 2011) found R2 values of 0.86–092 and 

NSE values of 0.51–0.68 in the Arachtos catchment, in western Greece. The SWAT model 

performance in the study area was particularly good (R2 = 0.685) during the rainy period 

(autumn and winter season) when flows were higher (Figure 4.11), which is particularly 

relevant due to the importance of the high flow season for reservoir management. 

 

 

Figure 4.9. Monthly average flow (mm) in Moinho Novo: (a) calibration period; (b) validation 

period. 

 

Figure 4.10. Monthly flow (m3/s) in Moinho Novo for the simulation period. 
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Figure 4.11.  Monthly flow (m3/s) in Moinho Novo for the simulation period during the 

high flow season (October to March). 

Water Availability 

After calibration and validation, the SWAT model was used to determine the long-

term water balance of the Montargil catchment for different scenarios. The monthly water 

balance considers precipitation, flows and actual evapotranspiration. The results indicate 

two distinct seasons. During autumn and winter, i.e., from October to March, precipitation 

and flows are high. Conversely, during spring and summer, between April and September, 

precipitation and flows are low (Figure 4.12).  

The expected precipitation reduction for all scenarios leads to a decrease of monthly 

flows (Figure 4.12), in line with previous studies (Almeida et al., 2018; De Luis et al., 2009; 

García-Ruiz et al., 2011; Hempel et al., 2013; Warszawski et al., 2014). Higher temperatures, 

which result in an increase of potential evapotranspiration, also concur with this situation 

(Figure 4.12). The baseline monthly actual evapotranspiration values are in accordance with 

the detailed work developed by Simionesei et al. (Simionesei et al., 2018) to pasture and 

Ramos et al. (Ramos et al., 2017) to maize grown in the Sorraia basin. Vegetation growth in 

the region may be compromised due to higher water stress as a result of higher 

evapotranspiration demand and limitations in water available for irrigation. 

The flow duration curves (Figure 4.13) show a decrease of flows with exceedance 

values Q95% from 1.7 m3/s in the baseline scenario to values of approximately 0 m3/s (Figure 

4.13). The single exception is the IPSL climate model for the 2030 timeline scenario, which 

maintains some low flows with a Q95% (~1.2 m3/s) close to the baseline value (~1.7 m3/s). 

The two climate models differ when projecting high flows events. The GFDL model projects 

a decrease of Q10% from 20 m3/s to ~2.5 m3/s and 2.8 m3/s for the 2030 and 2060 timelines, 

respectively. In an opposite way, the IPSL climate model suggests a similar value of the 

Q10% value to 18 m3/s for the 2030 timeline and increase to 25 m3/s for 2060. This may be 

due to the increase of predicted high precipitation events that resulted in flow peaks as 

showed already in several studies in Mediterranean region (Almeida et al., 2018; Giorgi and 

Lionello, 2008; IPCC and IPCC5 WGII, 2014) and especially in Almeida et al. (Almeida et al., 

2018) for the Sorraia basin, whose results show the impact of precipitation to water 
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availability in the basin. Those results we mainly related to climate change projection and 

management practices, which are expected to affect directly the reservoir water availability 

and consequently its vulnerability, especially during the irrigation season when a higher 

water demand is expected. 

 

Figure 4.12. Water balance results (in mm) to the baseline and GFDL and IPSL models for 

each timeline simulation: (a) Precipitation; (b) Flow; (c) Actual evapotranspiration; (d) Potential 

evapotranspiration. 
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Figure 4.13. Percentage of flow exceedance percentile comparison for baseline and future 

simulations. 

 

4.3.2. Reservoir Modelling 

Validation 

The SWAT flow estimations presented above were introduced as boundary conditions 

to the MOHID Water reservoir model. The baseline for simulating reservoir operation was 

defined from 2005 to 2014. A topography map with 90 m resolution was converted and 

adjusted into the 100 m resolution grid considered in the MOHID Water model using the 

tools available in MOHID Studio. Figure 4.14 compares the elevation–volume curve 

considered in the model with the one obtained from measured data. The simulation of the 

baseline period shows a close match between the computed and observed water surface 

elevation and stored volume values (Figures 4.15 and 4.16). The R2 value obtained for the 

stored volumes is 0.987 while for water levels is 0.988. These results are in accordance with 

Brito et al. (Brito et al., 2018b), who applied a similarmodel to study the Enxoé Reservoir 

dynamics in southern Portugal. Similar good results were obtained by Lee et al. (Lee et al., 

2018) for the Hodges Reservoir, San Diego, USA, and Noori et al. (Noori et al., 2015) for the 

Karkheh Reservoir, Iran, using the same model. 
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Figure 4.14. Real and modelled Elevation-Volume Curve. 

 

Figure 4.15. Comparison between stored volumes modelled and measurements. 
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Figure 4.16. Comparison between water surface elevation modelled and measurements.
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Water Availability 

After validation of the MOHID Water model, results were analysed on a monthly basis 

to understand the future behaviour of the Montargil reservoir and assess the impact of flow 

reduction on the reservoir ability to meet agriculture water demand. At this stage, two 

demand scenarios were considered by modifying the reservoir output discharge imposed in 

the MOHID Water model: 

- Assuming the average water demand in the past 10 years; 

- Considering the year with maximum water demand in the past 10 years, which 

correspond to a water demand increase of ~30% when compared with the average year. The 

second water demand scenario reflects the increase of irrigation in the Sorraia basin since 

water is mainly used for this purpose. 

To better understand the performance of the reservoir and its operating rules under 

climate change, the indicators described above were considered to determine the supply 

reliability, vulnerability of water needs, and the system’s resilience for each simulated 

scenario. This approach has been applied in several reservoir studies, including the Sorraia 

basin where the Montargil reservoir is included (Mateus and Tullos, 2016; Simões and 

Oliveira, 2014; Sušnik et al., 2015). As a failure reference, the volume of ~10 hm 3 was 

considered in case of extreme necessity when half of the dead volume could be used.  

The first water demand scenario (the average water demand in the past 10 years) 

resulted in an increase of monthly failures for both simulated climate scenarios and 

timelines (Figure 4.17 and Table 4.2). This shows that in the future, the stored volume is 

expected to be below the dead volume for several months, something that has never 

happened in the past (Figure 4.15). This is mainly due to the impact of runoff decrease in the 

reservoir, which is consistent with the literature as shown by Mateus et al. (Mateus et al., 

2017) when studying the reliability of six reservoirs in Scotland or Afzal et al. (Afzal et al., 

2015) when analysing the vulnerability of the Pong reservoir, India. Future water demand 

scenarios considered in both studies showed a reliability reduction and a vulnerability 

increase of the simulated reservoirs, advancing then with future water management 

strategies to cope with those predictions. The same was considered by Fiering et al. (B 

Fiering, 1982), proposing also mitigation strategies when vulnerability increases above 25%. 

The volumetric reliability, i.e., the percentage of needs that are satisfied during the 

simulation period, is higher when the IPSL climate model predictions are considered, 

reaching about 73% in both timelines (Table 4.2). The annual reliability is only 30% and 0% 

when using the IPSL and GFDL climate change predictions as inputs (Table 4.2), 

respectively, meaning that for the IPSL scenario the time reliability is on average only 3 

years (of 10 simulated years) while for the GFDL scenario the results are null. This is equally 

observed in the volumetric reliability results when considering the GFDL climate model 

predictions as inputs, with about 49% and 43% being expected during the 2030 and 2060 

timelines (Figure 4.17 and Table 4.2). 
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Figure 4.17. Stored volume evolution considering the average behaviour water demand: (a) 

IPSL2030 scenario; (b) GFDL2030 scenario; (c) IPSL2060; (d) IPSL2060. 

Table 4.2. Performance indicators obtained considering the average behaviour water demand. 

Scenario 
IPSL 

2030 

IPSL 

2060 

GFDL 

2030 

GFDL 

2060 

Number of months without failure 88 88 59 52 

Number of months with failure 32 32 61 68 

Reliability 
Number of annual failures 7 7 10 10 

Annual reliability (%) 30 30 0 0 

Vulnerability 
Volumetric reliability (%) 73 73 49 43 

Average duration of the failure (month) 5 5 6 7 

Resiliency 9 9 12 14 

Resiliency (%) 28 28 20 21 

For the second water demand scenario, i.e., when considering the highest annual 

demand in the past 10 years, results show an increase of monthly failures for both simulated 

climate scenarios and timelines when compared with the previous water demand scenario 

(Figure 4.18 and Table 4.3). The volumetric reliability is expected to be higher when 

considering the IPSL climate model predictions, reaching about 64% and 72% during the 

2030 and 2060 timelines, respectively. When adopting the GFDL climate model predictions, 

these only decreased to about 54% and 50% during the same period. The annual reliability is 

only 10% (2030 timeline) and 20% (2060 timeline) in the IPSL climate change prediction, and 

again 0% in the GFDL climate change prediction (Table 4.3). In other words, the time 

reliability averages only 1.5 year, while is null in the GFDL climate model. The resiliency for 

both water demand scenarios and timelines is similar, decreasing to an average of 20–35%. 

This value is considered not satisfactory for a basin which is highly dependent of water from 

the reservoir. 
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Model results showed a modification in the performance of the Montargil reservoir in 

the future which should be taken into account when improving water management at the 

watershed scale. The results showed the importance of analysing the metrics for improving 

the decision making process, especially when considering the projected changes for the 

Mediterranean region, as already demonstrated in Asefa et al. (Asefa et al., 2014). The 

decreasing trends observed in both scenarios are also observed in the literature, especially in 

studies addressing the impact of climate change in the water availability in rivers that drain 

to Mediterranean reservoirs. For example, Bates et al. (Bates et al., 2008) and the European 

Environmental Agency (European Environment Agency, 2005) showed that aridity is 

expected to increase in the Mediterranean region with climate change, increasing 

vulnerability in the region. More specifically, Almeida et al. (Almeida et al., 2018) reported a 

decrease of ~75% in the stream flows in the Sorraia basin in the 2030 and 2060 timelines. 

Bucak et al. (Bucak et al., 2017) estimated a reduction flow that could dry out the Beysehir 

reservoir in Turkey. Calbó et al. (Calbó, 2009) estimated reductions of ~34 % in water 

availability in Catalonia, Spain. In spite of all uncertainties described by Calbó et al. (Calbó, 

2009), water availability is commonly estimated to substantially reduce in all those studies 

carried out in the Mediterranean region. The reduction of river discharge and the increase of 

extended drought periods will as expected decrease the reliability and resiliency of the 

water system and consequently, increase its vulnerability, similar to the Montargil basin-

reservoir system. 

 

Figure 4.18. Stored volume evolution considering the maximum behaviour water demand: (a) 

IPSL2030 scenario; (b) GFDL2030 scenario; (c) IPSL2060; (d) IPSL2060. 
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Table 4.3. Performance indicators obtained considering the maximum behaviour water 

demand. 

Scenario 
IPSL 

2030 

IPSL 

2060 

GFDL 

2030 

GFDL 

2060 

Number of months without failure 77 86 65 60 

Number of months with failure 43 34 55 60 

Reliability 
Number of annual failures 9 8 10 10 

Annual reliability (%) 10 20 0 0 

Vulnerability 
Volumetric reliability (%) 64 72 54 50 

Average duration of the failure (month) 5 4 6 6 

Resiliency 11 12 11 16 

Resiliency (%) 26 35 20 27 
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4.4. Conclusions and Future Research 

This study presented an integrating modelling approach to quantify the availability of 

water resources in the Montargil basin and reservoir based on projections from two climate 

models and for two decades. This integrated modelling approach allowed a more 

comprehensive management action by providing the amount of water and the period of 

availability at a monthly scale. 

In the results the impact of climate change on the water availability in the Montargil 

reservoir on a monthly basis is quite noticeable. It is notable the importance of managing 

outflows to prevent reduction of water resources in the region. The hydrologic changes 

observed in the basin simulations contributed to the failure of the reservoir in meeting its 

operational objectives. The reliability and timing for refill affect water availability and 

limited irrigation practices.  

Modelling reservoir operations offered an important opportunity for mitigating 

hydrologic responses to climate change, which in turn could mitigate their negative impact 

on water availability. The findings in this work emphasize the importance of integrating 

modelling as a support to water managers in the decision making. This work further 

showed how the Montargil reservoir is particularly vulnerable to climate change, with its 

resilience requiring singular consideration. 

This work is a first approach, which is intended to be the basis for water managers in 

this case study and an example to similar areas where climate change is predicted to have a 

similar impact. In the future it is intended to evaluate the required behaviour of water uses 

over the next few years so that the volumetric reliability is fulfilled, not compromising 

typical agricultural activity in this region. This integrated modelling approach may be used 

as well to test land use changes, by substituting typical crops of the regional with others 

with different water requirements, thus quantifying theirs impact on the water balance of 

the reservoir. 
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Chapter 5 Evolution of the Trophic Status in a 

Mediterranean Reservoir under Climate Change: 

An Integrated Modelling Approach 
 

The material on which this chapter is based has been previously submitted in Almeida, C.; 

Ferreira T.; Branco, P.; Segurado, P.; Ramos, T.B.; Neves, R.; Proença de Oliveira, R. Evolution of 

the Trophic Status in a Mediterranean Reservoir under Climate Change: An Integrated Modelling 

Approach. Journal of Hydrology: Regional Studies 2019 (submitted) 

  Abstract 

This study describes an integrated modelling approach to better understand the trophic 

status of the Montargil reservoir in Southern Portugal under climate change scenarios. The 

Soil Water Assessment Tool and CE-QUAL-W2 models were applied to the basin and 

reservoir, respectively, for simulating water and nutrient dynamics while considering the 

climatic scenario from the IPSL Earth System Model for the 5th IPCC report and two decadal 

timelines (2025-2034 and 2055-2064). Model simulations showed that the dissolved oxygen 

concentration in the reservoir is expected to decrease in the hypolimnion by 60% in both 

decadal timelines. The chlorophyll-a concentration in the epiliminion is expected to increase 

by 25% for both future timelines. Total phosphorus concentration (TP) is predicted to 

increase by 63% in the water column surface and by 90% in the hypolimion during the 2030 

timeline. These results are even more severe during the 2060 timeline in which TP increase is 

predicted to increase 118% in the hypoliminion. Under these climate change scenarios, the 

reservoir showed an eutrophic state during 70% of the 2030 timeline and 80% in the 2060 

timeline. Even considering measures that involve decreases in 30 to 35% of water use, the 

eutrophic state is not expected to improve. This raises issues related with fish survival and 

ecosystems stability, as also the objectives outlined by EU Water Framework Directive. 

Keywords: trophic status; reservoir; climate change; modelling. 
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5.1 Introduction 

The European Water Framework Directive (WFD; 2000/60/EC) was adopted in 2000 as 

the main policy instrument for reaching a good ecological status of European surface waters 

by 2015 (WFD). However, this objective fell short, as 47% of the European surface waters 

still fail to meet such conditions (EC 2012b). Such outcome begs for a more sustainable and 

holistic approach to water management (Voulvoulis et al. 2017), particularly in the context of 

climate change (CEC 2009b). In a future scenario perspective, climate change is expected to 

impact the availability, seasonality, and variability of water resources (IPCC 2013). The 

adoption of climate change adaptation strategies by Member States is one of the concerns of 

the European Commission, who underlined the importance of an integrated analysis of 

impacts and a comprehensive adaptation strategy to that problem (Biesbroek et al. 2010). 

In Southern Portugal, many hydro-agricultural infrastructure (reservoirs) are common 

and used to face water scarcity resulting from the Mediterranean climate seasonal and intra-

annual variability. These aquatic systems are classified as heavily modified water bodies 

(HMWB) by the WFD. According to Commission of the European Communities (CEC 2015), 

around 30% of these heavily modified water bodies showed good ecological potential in 

2015, with problems arising from difficulties in the management of riverbanks and drainage 

basins, and the occurrence of frequent eutrophication episodes with cyanobacteria blooms 

and high ichthyofauna mortality.  

The use of predictive models for simulating the ecological conditions has many 

advantages over simple monitoring, allowing to predict the future status of a system 

resulting from changes of different environmental factors. The ecological status of reservoirs 

is inextricably linked to its drainage basin and models enable the assessment of basin-

originated impacts on the reservoirs, in an integrated way according to the Driver- Force–

Pressure–State–Impact–Response (DPSIR) approach (EEA 2007; Marty et al. 2014), offering 

also the possibility of addressing scenarios for future conditions. The integration of basin 

and reservoir models has been often used to study the water quality and trophic status of 

the Mediterranean reservoirs. For example, Saddek & Casamitjana (2018) applied a one-

dimensional hydrodynamic and water quality model to study the water quality behaviour 

in the Boadella reservoir Catalonia, Spain. Zouabi-Aloui & Gueddari (2014) analysed three 

scenarios involving the impacts of severe drought season, summer rainfall and total 

suspended solids load on hydrodynamics and water quality, of a stratified dam reservoir in 

the southern side of the Mediterranean Sea. Also, Nsiri et al. (2016) applied a modelling 

approach to study the thermal stratification and the effect on water quality in four reservoirs 

in Tunisia. In Portugal, the National Water Institute (INAG) carried out an integrated 

modelling study to gain knowledge on the trophic levels of 30 reservoirs under the scope of 

the Waste Water Treatment Plant directive (INAG 2009). Several other studies were carried 

out to analyse water quality and consequently the trophic state of reservoirs in southern 

Portugal, including: those aimed at finding a solution for the constant eutrophic state of the 

Enxoé reservoir (Brito et al. 2018, 2017; Fontes 2010, Ramos et al. 2015a, 2015b, 2018); the 
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water quality assessment of the Alqueva reservoir through data analysis techniques and 

numerical modelling (Fontes 2010); and the quantitative and qualitative assessment of the 

relationship between eutrophication and ground baiting on angling competition in the 

Maranhão reservoir (Amaral et al. 2013). 

Nevertheless, there is a gap in studies including water quality status predictions in 

typically Mediterranean climate study cases. 

Therefore the objective of this study is to analyse the present and future trophic status 

of a typical Mediterranean reservoir located in Southern Portugal using modelling as an 

integration tool of the drainage basin and reservoir. For this purpose, a climate model is 

used as boundary condition to a basin model, which in turn is integrated into a reservoir 

model. The specific objectives are: (1) to determine the trophic status of the reservoir while 

considering baseline conditions and future climate scenarios; and (2) to analyse possible 

measures to improve trophic status in future scenarios. This study is particularly relevant in 

performing an integrated modelling approach to analyse the trophic status of a HMWB 

under the context of climate change and on the sustainability of the water use in the future 

and its implications. Therefore, although it is a case study undertaken at a local scale, it may 

provide insights with a wider application to reservoirs within the Mediterranean region 

with similar future climatic trend. 

 

5.2 Materials and Methods  

5.2.1. Study Area 

The Montargil reservoir with a drainage area of 1200 km2 is located in one sub basin of 

the Sorraia River, southern Portugal (Lat: 38.59° to 39.50°; Long: −8.99° to −7.24°). The 

climate has the typical Mediterranean behaviour with dry and hot summers, and mild and 

wet winters. The maximum reservoir capacity is 164 hm3; the maximum water surface 

elevation is 80 m; and the minimum water surface elevation acceptable for operation is 65 m, 

which correspond to a dead storage pool of 143 hm3. The reservoir is part of the Vale do 

Sorraia watering system, controlled by the local Water Board (Associação de Regantes e 

Beneficiários do Vale do Sorraia, ARBVS) since 1970. The Sôr River supplies most of the 

water to the reservoir (60-70%), with minor contributions from several ephemeral streams 

during winter. The water level is regulated by water demand for irrigation and 

meteorological conditions. Additional uses are electric power generation, fishing and 

recreation (water sports). The tourist potential of the location (close to Lisbon) is currently 

recognized in the reservoir ordinance plan (approved by the Portuguese Minister Council 

resolution nº 94/2002). 

The use of the reservoir for recreational purposes has increased, but some bathing 

water quality issues have been raised at some locations, with the reservoir occasionally 

failing to comply with the 76/160/CEE directive due to high bacterial concentrations. The 
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reservoir has also registered cyanobacteria blooms over the years, with reports on 

cyanobacteria blooms going back to 1995 (Pereira et al. 2001). The worst year was 1996 with 

several blooms of toxic species (Aphanizomenon flos-aquae, Aphanizomenon gracile, 

Anabaena spiroides, and Microcystis aeruginosa) being registered (Ferreira et al. 2009).  

The main land use in the upstream catchment is forest with oak trees, covering more 

than 40 % of watershed area. Annual crops account for 13% of the watershed area while 

some irrigation cropping is present on 2% of the area. The connection between agricultural 

activities, point sources, and nutrient enrichment of the reservoir is an open subject for this 

area as is the relationship between nutrient enrichment and cyanobacteria domination over 

certain periods of time. These relationships are fundamental for improving both policies 

related to reservoir management. 

 

5.2.2. Hydrological Modelling 

5.2.2.1 The Soil and Water Assessment Tool model (SWAT) 

Diffuse pollution and inflows to the Montargil drainage basin were simulated with the 

SWAT model (Neitsch et al. 2009) in Segurado et al. (2018) and Almeida et al. (2018, 2019). 

Readers are thus directed to those studies for a detailed description of the modelling 

approach adopted for quantifying water and nutrient yields from the watershed. In those 

studies, the SWAT model was applied to the Montargil basin using the ArcSWAT version. 

The model application relied on available GIS maps for topography from Shuttle Radar 

Topography Mission with 90 m resolution, land use from Earth Observation (EO) GSE Land 

M2.1 with 20 m and 300 m detail, and Cardoso et al. (1965) soil maps (1:25 000 scale) and 

properties from reference soil profiles. Climatic maps, including daily precipitation, 

temperature, relative humidity and wind speed were derived from the Portuguese National 

Institute of Water Resources, SNIRH (SNIRH 2018). Downstream the artificial reservoir, 

daily discharge data provided by the reservoirs’ manager (ARBVS – Farmers Association 

from the Sorraia Valley) were considered in the model for a period from 1996 to 2015. The 

baseline simulation was thus defined for the period between 1996 and 2015. The SWAT 

model calibration and validation for the Montargil basin was carried out by comparing 

simulated and observed flows at the Moinho Novo hydrometric station (Lat. 39.228°; Long. -

8.029°). The SWAT model was calibrated manually for the period between 1996 and 2005, 

while the validation covered the period from 2005 to 2015. 
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5.2.3 Reservoir Modelling 

5.2.3.1 The Hydrodynamic and Water Quality Model (CE-QUAL-W2) 

The CE-QUAL-W2 is a bidimensional model that assumes lateral homogeneity and supports 

vertical and horizontal gradients of all calculated properties (Cole & Wells 2015). The 

current version (version 4.1) simulates the systems hydrodynamics and water quality both 

vertically and longitudinally in both stratified and not stratified systems.  

This model computes biogeochemical processes such as nitrogen, phosphorus, carbon and 

oxygen cycles, as well as the dynamics of algae and organic matter. In the organic matter 

(OM), the dissolved non-refractory OM (LDOM), the dissolved refractory OM (RDOM), the 

particulate non-refractory OM (LPOM) and the particulate refractory OM (RPOM) are 

considered in the model.  

The model boundary conditions included daily river inputs of NO3−, NH4+, organic matter, 

orthophosphate, total suspended solids and O2 computed with the SWAT model (Almeida 

et al. 2018, 2019; Segurado et al. 2018). Daily weather data (air temperature, humidity, wind 

velocity and direction, cloud cover and solar radiation) were provided by SNIRH for the 

period 2005-2014 (SNIRH 2018). 

Bathymetry was constructed considered the work already done in Almeida et al. (2019) 

where the topography map with 90 m resolution was converted and adjusted until obtain 

the model elevation–volume curve adjusted with the measurements. Because of the model 

requirements this bathymetry was defined in longitudinal and vertical segments, and cell 

widths. Therefore, the Montargil Reservoir was described at full capacity with a geometry 

consisting of 13 segments with lengths of 360–2700 m and widths of 500–3000 m at the 

surface (Figure 5.1). A minimum of four vertical layers upstream, and a maximum of 32 

layers near the dam, all with 1 m high, were considered (Figure 5.1). Also, the effluent 

reservoir discharge provided from ARBVS, which translates the water used for irritation 

purposes in the downstream area, was used as outflow. 
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Figure 5.1 CE-QUAL-W2 grid definition of Montargil: a) plan view of the 32 layers and the 

13 active segments; b) profile view along the axis. 

 

The calibration and validation exercise was based on the comparison of in-field 

measurements of hydrodynamic and water quality variables against model results. The 

2005-2014 period was considered as the baseline for reservoir operation simulation. The 

measured data used for calibration of the CE-QUAL-W2 model were: seasonal profiles of 

temperature and dissolved oxygen measured by Ferreira et al. (2009) during February, May 

and August 2006; and water surface elevation provided by SNIRH for the period 2005-2015; 

and for validation were: reservoir surface data of water temperature, dissolved oxygen, total 

N, total P, chlorophyll-a, and TSS obtained by SNIRH for the period 2005-2013.  

The validation exercise considered the comparison between model and field measurements 

of water surface temperature, dissolved oxygen, total N, total P, chlorophyll-a, TSS, as well 

as the average, standard deviation and median analysis of each property. 

  

5.2.4. Climate model and Storyline 

This work followed the framework established by Grizzetti et al. (2014) and Birk et al. 

(2018) during the Project “Managing Aquatic Ecosystems and Water Resources Under 

Multiple Stress – MARS” (Hering et al. 2015), which was also adopted by Segurado et al. 

(2018) and Almeida et al. (2018, 2019) for the Montargil basin and reservoir. Hence, this 

study adopted the IPSL-CM5A-LR model (O’Neill et al. 2014) for defining the atmospheric 

boundary conditions. This model considers a decrease of 50% precipitation when compared 

to the historical data (Table 5.1), while temperature predictions show larger monthly 

amplitudes (Table 5.1). Historical temperature and precipitation data for the period 2005-

2014 were corrected in Almeida et al. (2018), using a linear scaling bias correction method 

developed by Shrestha et al. (2015) based on the average difference between monthly 

observed and historical time series for the same period. This method is considered as having 

identical performance compared to complex bias correction techniques (Shrestha et al. 2017). 
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This 10 years period (2005-2014) was selected as a reference for the present condition 

(baseline simulation) and two distinct temporal intervals were set up to run the future 

simulations: 2030 (defined as a 10-years average from 2025 to 2034) and 2060 (defined as a 

10-years average from 2055 to 2064). 

This study further considered the storyline proposed by O’neill et al. (2014) and Moss 

et al. (2010) which results from the combination of the Shared Socioeconomic Pathway-2 

(SSP-2) defined as an intermediate stage in the evolution of the society and ecosystems over 

a century timescale (Riahi et al. 2017; Warszawski et al. 2014), and the Representative 

Concentration Pathways 4.5 (RCP 4.5). It has been shown elsewhere (Almeida et al. 2019, 

2018; Segurado et al. 2018) that severe impacts resulted even when considering a 

conservative storyline such as this. Therefore, this storyline was selected to explore the 

effects of managing irrigation using the most conservative approach. Thus, the underline 

premise in selecting this storyline is that in case substantial effects of management scenarios 

are predicted to occur, they will most certainly also occur if more severe scenarios would be 

taken into account. 

The downscaling of management practices change in Montargil catchment was 

performed with the support of the local water board stakeholders (ARBVS), similarly as in 

Almeida et al. (2018, 2019). Accordingly, in the scenario here considered, the application of 

fertilizers was predicted to decrease by 10% and 15% in the 2030 and 2060 timelines, while 

irrigation needs would decrease by 20% and 25% during the same time periods (Table 5.2).  

 

Table 5.1 Average monthly temperature (°C) and precipitation (mm) for the baseline condition 

and climate model timelines – 2030 and 2060. 

  Temperature Precipitation 

Month Baseline 2030 2060 Baseline 2030 2060 

January 8.0 4.2 4.7 56 14 36 

February 9.4 5.3 6.1 41 30 47 

March 11.0 8.2 9.5 47 32 33 

April 13.4 9.3 10.6 47 14 17 

May 16.7 14.0 13.8 36 20 10 

June 20.2 22.5 23.7 11 12 8 

July 23.1 29.5 31.3 3 0 0 

August 22.6 29.2 30.9 6 2 2 

September 20.4 25.4 26.9 30 7 8 

October 16.1 17.6 18.3 84 50 39 

November 11.9 8.0 8.9 64 40 23 

December 9.0 4.6 5.7 62 43 28 
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Table 5.2 Input values used for simulating the scenario in SWAT and CE-QUAL-W2 models. 

Management 

Practices 
Baseline Timeline Variation (%) 

Fertilization (kg/ha) 492 
2030 −10 

2060 −15 

Irrigation (mm) 430 
2030 −20 

2060 −25 

 

5.3. Results and Discussion 

5.3.1. Water Quality of Reservoir Inflows 

A good agreement was found between model and measured discharge data during the 

calibration period, especially on a monthly basis, resulting in a coefficient of determination 

(R2) value of 0.71, a Root Mean Square Error (RMSE) value of 6 m3/month, and a Nash–

Sutcliffe model efficiency coefficient (NSE) value of 0.71. During the validation period the 

same behaviour was found, with a coefficient of determination (R2) value of 0.68, a Root 

Mean Square Error (RMSE) value of 7.5 m3/month, and a Nash–Sutcliffe model efficiency 

coefficient (NSE) value of 0.67. The SWAT model validation of N and P simulations was 

performed at Ponte de Coruche station (Lat. 38.956°; Long. −8.524°). For Total N, a R2 value 

of 0.59 and a bias of 0.22 mg.N L-1 was found. For Total P, model comparison to measured 

data produced a R2 value of 0.14 and a bias of -0.067 mg.P L-1. Further results of simulations 

of the SWAT model can be found in Segurado et al. (2018) and Almeida et al. (2019, 2018). 

After calibration and validation, the model was used to estimate water quantity and 

quality of reservoir inflows for the baseline and climate change timelines, in order to analyse 

the future impacts that may result from these future changes. A decrease of 47% and 69% of 

reservoir inflows were estimated for the 2030 and 2060 timelines, respectively, which is in 

agreement with the results found by Almeida et al. (2018, 2019) in the Sorraia basin, 

averaging 31% for the 2030 timeline and 66% for the 2060 timeline. These decreasing in flow 

rivers it is expected in several Mediterranean case studies, resulting mainly from the 

decreasing in precipitation events, as showed by De Luis et al 2009), García-Ruiz et al. 

(2011), Pacual et al (2015) and Bucak et al. (2017). Nitrate concentration increased by 64% 

and 75% during the 2030 and 2060 timelines, as expected mostly due to the decreasing of the 

water flows. The difference in the orthophosphate concentration was not so pronounced, 

decreasing by 23% in 2030 and increasing by 11% in 2060. This slight variation may be due 

to the low mobility of P, which is dependent of runoff and soil erosion, when compared to 

N, which is mainly transported through leaching. The dissolved oxygen concentration was 

observed to decrease by 1% and 2% during the 2030 and 2060 timelines, respectively. The 

deterioration of water quality was thus noticed even though agriculture was not 
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predominant in the Montargil basin and fertilizers application also decreased as considered 

in the simulated scenario. These long-term results were afterwards considered as boundary 

condition for reservoir model Ce-QUAL-W2.  

 

5.3.2. Calibration and validation of reservoir model 

The simulation of the baseline period showed a close match between the computed 

and observed water surface elevation (Figure 5.2), with a R2 of 0.92. The parameters used for 

calibrating the water quality model corresponded to the kinetic coefficients in the water 

column (Table 5.3). The calibration exercise was focused on the temperature and oxygen 

profiles. The parameters related to extinction coefficients that control light availability at 

lower depths were first reduced. The different parameters related to growth rates and 

optimum temperatures for the different algal species were also adjusted while considering 

mainly oxygen depletion.  

 

 
Figure 5.2 Time series of water surface elevation at the Montargil Reservoir dam (model results: black 

line; field data: red points). 

 

Table 5.3 The kinetic coefficients and values for the Montargil Reservoir.: 

Parameter Description 

Default 

 value 

Calibrated  

value 

EXH2O Extinction for pure water (m -1) 0.25 or 0.45 0.25 

EXOM Extinction Coefficient for organic matter (m -1) 0.2 0.1 

EXZOO Extinction Coefficient for zooplankton (m -1) 0.2 0.01 

BETA Fraction of incident solar radiation absorbed at the water surface (%) 0.45 0.55 

AG-1 Algal growth rate for diatoms (day -1) 0.3-3.0 1 

AG-2 Algal growth rate for Chlorophyceae (day -1) 0.7-9.0 0.7 

AG-3 Algal growth rate for Cyanobacteria (day -1) 0.5-11 0.5 
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Parameter Description 

Default 

 value 

Calibrated  

value 

AT1-2 Algal minimum temperature for Chlorophyceae (°C) 5 10 

AT1-3 Algal minimum temperature for Cyanobacteria (°C) 5 15 

AT2-1 Algal first optimum temperature for diatoms (°C) 25 10 

AT2-2 Algal first optimum temperature for Chlorophyceae (°C) 25 15 

AT2-3 Algal first optimum temperature for Cyanobacteria (°C) 25 23 

AT3-1 Algal last optimum temperature for diatoms (°C) 35 20 

AT3-2 Algal last optimum temperature for Chlorophyceae (°C) 35 25 

AT3-3 Algal last optimum temperature for Cyanobacteria (°C) 35 25 

AT4-1 Algal maximum temperature for diatoms (°C) 40 25 

AT4-2 Algal first maximum temperature for Chlorophyceae (°C) 40 30 

AT4-3 Algal first maximum temperature for Cyanobacteria (°C) 40 30 

 

The model was able to describe temperature and dissolved oxygen profiles 

particularly during the main seasons, summer and winter (Figure 5.3). The results for the 

vertical temperature profiles showed a noticeable seasonality in the surface layer where the 

influence of solar radiation, air temperature and wind were evident. This is a typical 

behaviour of Mediterranean reservoirs where the seasonally is patent (Sellami et al, 2010; 

Tornes et al, 2014; Hassen et al, 2019). The thermocline occurred around 5-10 m depth 

during August, when air surface temperatures were higher and flows were reduced, with 

differences reaching 15°C from surface to bottom while the dissolved oxygen changed from 

9 mg.L-1 to 0 mg.L-1 (Figure 5.3). During February 2006, stratification disappeared probably 

due to the combined action of increased wind velocity in the surface layer, cooling and 

increased flows. During this season, a homogeneous temperature profile was observed 

(Figure 5.3). The thermal stratification and mixing influenced the dynamics of primary 

production, controlling light and nutrients availability. During winter, the decreased 

stratification effect created a homogeneous profile of temperature, while nutrients 

availability existed from the bottom to surface layers.  
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Figure 5.3 Temperature (a) and dissolved oxygen (b) profiles at the Montargil Reservoir dam on 

different dates (model results: black line; field data: red points). 

 

In the validation exercise it should be taken into consideration, as a cumulative 

uncertainty, that the model results are mean daily values, contrary to the measured values, 

which are hourly instant values. 

The comparison made for simulated and measured surface water temperature 

showed that the model was able to represent the seasonality of the reservoir as well as 

minimum and maximum values for the period considered. The average temperature was 

18°C (Table 5.4), ranging from 10°C in winter, to 25°C during the warmer season (Figure 

5.4). The model was able to reproduce the trend of surface dissolved oxygen (average 9 

mg.L-1 and a standard deviation of 1.6 mg.L-1 modelled and 1.9 mg.L-1 in the field data) 

(Table 5.4), including oversaturation, resulting mostly from the rapid increase/accumulation 

of algae (algae bloom). In general, the dissolved oxygen concentration in the Montargil 

reservoir did not vary below the limit value of 5 mg.L-1 below which the potential ecological 

state may be compromised as stated by Ferreira et al. (2009) and INAG (2009). The few field 

data of total nitrogen concentration do not allow for an adequate statistical analysis, only 

being observed that the mean values are within the same order of magnitude (average 1.4 

mgN.L-1 and range from 0.5 mgN.L-1 to 5 mgN.L-1, and a standard deviation of 0.8 mg.L-1 

modelled and 0.3 mg.L-1 in the field data) (Table 5.4 and Figure 5.4). Total phosphorus 

concentration was acceptably reproduced (average 0.2 mgP.L-1), despite producing a slight 
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overestimation of the measured values. Likewise, the chlorophyll-a data in the reservoir was 

in agreement with the measured data, averaging 22.0 µg.L-1 (Table 5.4), and revealing 

maximum concentrations reaching values above 50 µg.L-1 during the simulated time period. 

In general, the concentration values related with algae blooms are above the limit of 

eutrophication when higher than 10 µg.L-1 (Chapra 1997). The measured data presented 

significant variation, with the model reproducing well the seasonal pattern (Figure 5.4). The 

CE-QUAL-W2 model was also able to reproduce the trends of TSS during the period 

(average of 11 mg.L-1 modelled and 9 mg.L-1 in the field data, and a standard deviation of 

8.9 mg.L-1 modelled and 7 mg.L-1 in the field data), which were consistent with the inflows 

from the drainage basin. 

 
Figure 5.4 Time series of surface properties (temperature, dissolved oxygen, total N, total P, 

chlorophyll-a, TSS) at the Montargil Reservoir dam (model results: black line; field data: red points). 
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Table 5.4 Statistical analysis of measured field data and model estimates. 

  Average Standard Deviation Median 

Water Level 
Model 77.3 2.9 77.7 

Data 77.6 1.9 77.9 

Temperature 
Model 17.8 6.1 18.1 

Data 18.2 5.4 18.4 

Dissolved Oxygen 
Model 8.9 1.6 8.9 

Data 8.7 1.9 8.9 

Total N 
Model 1.4 0.8 1.3 

Data 1.1 0.3 1.1 

Total P 
Model 0.2 0.1 0.1 

Data 0.1 0.1 0.1 

Chlorophyll-a 
Model 22.0 23.7 13.8 

Data 18.6 27.2 11.7 

TSS 
Model 11.0 8.9 8.3 

Data 9.4 7.0 6.5 

5.3.3. Assessment of climate change impact on reservoir water quality 

under SSP-2/RCP 4.5 scenario 

After the CE-QUAL-W2 model calibration and validation, the baseline and scenarios 

results were analysed on an annual, monthly and daily basis to understand and evaluate the 

evolution of Montargil’s trophic state.  

The predicted decrease of reservoir inflows in both timelines (2030 and 2060) led to a 

decrease of water levels by 10% even when assuming a decrease of 20 and 25% in future 

irrigation needs (Table 5.2). This is in accordance with Almeida et al. (2019), who considered 

more severe climate scenarios for the Montargil basin which limited even more water 

availability in the reservoir. Also, Milly et al. (2005) predicted a decrease by 10-30% in runoff 

in the Mediterranean region; and Bucak et al. (2017) predict the possibility in the future, of 

drying out of the Lake Beyşehir, catchment in Central Anatolia, Turkey.  

The decrease in the inflows to the reservoir will increase residence time, which lead to 

an increase in the nutrients concentration and in turn a decrease in dissolved oxygen 

concentration. This decrease water inflow will thus decrease the dilution and flushing effect 

which will increase the biomass of plankton algae by increasing the nutrients concentration 

(Bartoszek & Koszelnik 2015). 

The dissolved oxygen concentration in the water surface layer epilimnion (considered 

at 0.8 m depth) showed a minor decrease for both timelines, with reductions reaching 4% 

when compared to the baseline mean value (Table 5.5). The highest reduction is observed in 

the hypolimnion (considered at 20 m depth), with the model predicting a reduction of 58% 

and 62% for the 2030 and 2060 timelines (Table 5.5).  
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Table 5.5 Variation (Var.) in temperature, dissolved oxygen, chlorophyll-a and total P, in the 

different layers and scenarios, comparing with baseline, in %; and respectively standard error (Std. 

Err.), in %. 

S
ce

n
a

ri
o

 

Layer 

Temperature DO CHLA TP 

Var. 
Std. 

Err.  
Var. 

Std. 

Err. 
Var. 

Std. 

Err. 
Var. 

Std. 

Err. 

2
0

3
0

 Epilimnion +3 1.93 -4 0.49 +25 2.65 +63 0.16 

Hypolimnion -8 1.10 -58 1.36 -13 1.95 +90 0.19 

2
0

6
0

 Epilimnion +3 1.91 -4 0.47 +20 2.80 +62 0.16 

Hypolimnion -14 1.03 -62 1.28 -46 1.20 +118 0.27 

 

The monthly averages of the dissolved oxygen concentration for the 30 years 

considered (baseline, 2030 and 2060 decades) revealed, as expected, the decrease of this 

parameter during months with higher temperature and lower inflow rate. In the epilimnion 

layer, values did not vary considerably and were maintained above the minimum limit 

considered for a water body to be classified as having good ecological potential which is 

above 5 mg.L-1 according to INAG (2009). Nonetheless, for dissolved oxygen the focus of 

the analysis should be the hypolimnion where the dissolved oxygen registered values close 

to 0 mg.L-1 for several months for both timelines. A daily basis analysis showed that DO 

concentration was lower than 5 mg.L-1 in 36% of the baseline simulated days; contrarily that 

condition was predicted to occur in 66% and 69% of the simulated days for the 2030 and 

2060 timelines, respectively, thus clearly indicating a tendency for the Montargil reservoir to 

evolve to a hypereutrophic state. 

In addition to DO concentration, chlorophyll-a and total phosphorus concentration 

parameters are essential for trophic analysis. Chlorophyll-a is a pigment common in most 

primary producers and appears as a biological variable of easy determination, indicative of 

plant biomass. This is the reason why it has been used in different water classification 

systems, namely in the classification of the trophic state by OECD (Caspers 1984). 

Chlorophyll-a concentration increased in the epilimnion layer during both timelines, 

averaging more 25% and 20% when compared to the baseline mean value (Table 5.5). In 

contrast, a reduction of 13% in the 2030s and 46% in the 2060s was observed in hypolimnion 

layer (Table 5.5). This decrease was mainly due to photosynthesis and DO limitation. 

Monthly chlorophyll-a concentration values increased mainly during the spring months. 

The reservoir was considered as oligotrophic (chlorophyll-a <2.5 µg.L-1) during most part of 

the baseline period (55%), yet presenting an eutrophic state (chlorophyll-a > 10 µg.L-1) 

during the remaining period. Model simulations showed that for the 2030 and 2060 

timelines, there is a tendency for an increase of the number of days registering an eutrophic 

state, covering 69% and 81% of the days in the 2030 and 2060 periods, respectively, and a 

decrease of the number of days predicted to register an oligotrophic state was only noticed 

on 15% and 31% of the days. Total phosphorus concentration increased in both layers during 

the period under analysis. In the epilimnion layer, total phosphorus concentration increased 
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by 62% in both scenarios when compared with the baseline mean value (Table 5.5). In the 

hypolimnion layer, that increase reached 90% and 118% during the 2030 and 2060 timelines 

(Table 5.5), being mostly explained by the availability of phosphorus in the sediment bottom 

(Jouni 2011) and the lower percentage of oxygen saturation. This is in line with the studies in 

the Mediterranean lakes and lagoons which reported nutrient release from the bottom 

sediment (Gikas et al. 2006; Chamoglou et al. 2014; Beklioglu 2007). Considering the 

maximum limit established by INAG (2009) to maintain the good ecological status of a 

reservoir (0.07 mg.L-1), the annual average of total phosphorus concentration in the 

Montargil reservoir indicates mostly an eutrophic state. Model simulations show that the 

trophic status is expected to deteriorate due to climate change, similarly as in the Karla’s 

Lake in Greece where phosphorus concentration far exceeded the limit of good ecological 

status (Chamoglou et al. 2014). Several studies showed already unacceptable ecological 

status in many reservoirs, such as the eutrophic Enxoé reservoir in southern Portugal, 

according to Brito et al. (2017), where only with structural measures trophic state may 

improve; Molina-Navarro et al. (2014) also predicted a deterioration of trophic conditions in 

the Pareja limno-reservoir, Spain, in most of the future scenarios considered; and the same in 

the study of Chang et al. (2015), which related the thermal stratification caused by the rising 

temperature in the future, with the higher risk of eutrophication. 

 

5.3.4. Assessment of climate change impact on reservoir water quality 

under an improved SSP-2/RCP 4.5 scenario 

Considering the previous results where the impact of climate change especially related 

to the precipitation decrease resulted in a decrease of water quality in the reservoir is 

evident, it was considered an improvement of the scenario. Both considered scenarios may 

be treated as measures to be implemented in the future. There are two main types of 

measures to be applied in reservoirs: preventive and corrective. Preventive measures act 

mainly in the drainage basin (such as: land uses management, improvement of agricultural 

practices or reduction of water abstraction). Corrective measures act in a mechanical 

method, biological or chemical. Preventive measures should be studied in a context of future 

scenarios in order to avoid the implementation of corrective measures, which are considered 

costly and could have negative impact on the environment and aquatic life. Moreover, in an 

integrated mathematical modelling approach such as the presented in this study, the 

measures implementation is restricted to management practices related to the water 

quantity and quality. 

Based on the results found in this study as well as in previous studies in this location 

(Almeida et al. 2018, 2019; Segurado et al. 2018), where the major impact was shown to be 

mainly related to water scarcity, as a result of precipitation decrease, scenarios considering 

decreasing irrigation needs (by 30% and 35%, respectively for 2030 and 2060) equivalent to 
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decreasing water abstraction measure, were defined in order to explore whether a less 

abrupt decrease in water level would result in an improvement of the future trophic state. 

 

  
Figure 5.5 Annual comparison of total phosphorus and chlorophyll-a, in epilimnion. Dashed red line 

is the national official limit for the boundary of good status. 

 

 

Figure 5.6 Annual comparison of dissolved oxygen, in epilimnion and hypolimnion. Dashed red line 

is the national official limit for the boundary of good status. 

 

With the implementation of a 30% and 35% reduction in water abstraction for 

irrigation, a small improvement in the reservoir water quality concerning total phosphorus 

(on average -10% in 2030 and -20% in 2060) and chlorophyll-a (on average -14% in 2030 and -

31% in 2060) (Figure 5.5) was observed. On average, the dissolved oxygen concentration has 

remained constant, although in the years where the concentration is predicted to increase, 

the reservoir does not reach an acceptable good quality status (Figure 5.6). 

Concerning the impact of these water quality indicators on aquatic life, additional 

measures should be tested, considering the limitations on the implementation of these 

models: These include reduction on water abstraction for irrigation by an improved 

adaptation to seasonal changes, or through incentives to encourage land use transition from 

irrigated crops to rainfed crops. 
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5.4. Conclusions and Future Research 

The integrated modelling used here proved to be an asset for management purposes, 

since it allowed to continuously analyse the inflow to the reservoir and its changes in the 

water quality under the influence of climate change. It is concluded that the case-study 

reservoir, as a consequence of the decrease of the inflows and increase of nutrient 

concentrations, as well as consequence of the decrease of precipitation observed in the 

region, will suffer an increase in nutrient and chlorophyll-a concentrations and a decrease in 

dissolved oxygen. In general, and considering all parameters here analysed, the tendency for 

the trophic status in the studied reservoir in the future is to an increasing eutrophic state, 

even considering a scenario of decreasing water abstraction. These results suggest that the 

ecological status of this reservoir in the future will be strongly impacted, compromising the 

survival of many fish species, mainly due to the high variation of dissolved oxygen with low 

levels during long periods of time. 

Measures should be implemented to counteract more efficiently the predicted effects of 

climate change and should be preferably preventive, in opposition to corrective, to reduce 

both financial and environmental costs. Alternative management scenarios could be 

incorporated within the integrated modelling approach developed in the present study to 

predict their outcomes and anticipate cost-effective measures. Because similar climatic 

future tendencies are foreseen across the Mediterranean region (Chamoglou et al. 2014; 

Chang et al. 2015; Molina-Navarro et al. 2014), the trophic status trends under climate 

change scenarios predicted by this study, as well as the outcomes of the management 

scenarios, might be generalized to similar Mediterranean basins. These studies should 

provide tools to water managers allowing them to act timely without compromising the 

ecosystem, and in this way accomplishing more effectively the community objectives 

established by WFD. 
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Chapter 6 General Conclusions 

 

The central objective of this thesis was to develop and test an integrated modelling 

approach to access the impacts of climate change and societal scenarios on water quantity 

and quality in the Sorraia River basin. The achievement of this objective was confirmed 

through the application of the selected models and the different analyses described. These 

analyses were based on the socio-economic scenarios of evolution of the society that are 

expected in the future and the results of this evolution at the climatic level, as well as the 

analysis of the changes in the precipitation and drainage regimes, water quality status in the 

river and reservoir, mainly concerned with nutrient concentration, water temperature and 

dissolved oxygen.  

 

These analyses allowed therefore, answering the following questions: 

 Is modelling an effective approach to access the impacts of future climate and 

societal scenarios on a basin water quantity and quality? 

The first modelling approach developed in this work was focused on the Sorraia River 

basin in order to estimate water flows and nutrients concentrations, which will be 

determinant on the downstream impact. The main finding in the results showed in 

Chapter 3, was that in the future and considering the scenarios studied, the Sorraia river 

basin will have poor water quality and low water availability. In the river, it is expected an 

increase of nitrogen and phosphorus concentration, and a severe decrease of the river flows.   

This study shows the capability of the hydrological modelling in predicting changes in 

flows and nutrients concentrations, resulting from different scenarios and its possible 

cumulative impacts on the future. The results show how the mathematical models can be 

considered as a starting point for defining appropriate management plans to counteract such 

negative impacts.  

 Is integrated modelling an effective approach to access the future water 

demand vulnerability in a reservoir? 

The integration of the basin and reservoir models considered was focused on water 

quantity and allowed to analyse vulnerability and resiliency of the Montargil reservoir - one 

of the main Sorraia river reservoir - in the future under different management scenarios. The 

results found in Chapter 4 showed that it is expected a marked decrease on the water level 

during most of the period studied in the future, causing an extremely high difficulty to 

respond to water needs observed over the years. It has also been observed that even after a 

significant reduction in water consumption, the reservoir remains at very low levels, and 

thus water needs will not be guaranteed over long time periods. The impacts found, indicate 

the importance of an integrated management system to avoid the decrease of the water 
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resources in the region and to increase the system's reliability and resilience, and 

subsequently reduce its vulnerability. 

Furthermore, this approach showed the possibility to implement a more 

comprehensive management action by providing the amount of water and the period of 

availability at a monthly scale, especially in a region such as the Mediterranean where the 

importance of managing outflows to prevent reduction of water resources is crucial. This 

methodology, applied on a different time scale, will thus allow reservoir managers to 

decide, for example, what the minimum flow should be considered to not compromise the 

reservoir ecosystem and to meet users' needs.  

 Is integrated modelling an effective approach to access to access the future 

trophic status under climate change? 

The integration of the basin and reservoir models showed in Chapter 5, was focused 

on water quality issues in the reservoir. This study could be a basis for the trophic status 

classification of water bodies, extremely important for the European Members in order to 

meet the objectives of the Water Directive Framework. The integration of the basin and 

reservoir models allowed analysing continually the trophic status, which is critical to 

investigate the behaviour of each water body, especially reservoirs. In the Montargil 

reservoir, the results obtained showed that it is expected an increase of the nutrient 

concentration and a marked decrease of dissolved oxygen. These results showed that the 

Water Framework Directive objectives will not be accomplished in this reservoir and by 

continuing these practices it is unlikely that the good water body status will be achieved, as 

would be desirable.  This approach is thereby quite acceptable to predict present trophic 

status of reservoirs which are poorly monitored, such as the Montargil reservoir, as to 

analyse its behaviour, considering future inflows from its drainage basin, and the expected 

climate change in the region. 

 

Beyond the integrated modelling approach showed in Chapter 3, 4 and 5, 

complementary studies were carried out under this thesis. In both studies, presented in 

Appendixes 1 and 2, the results obtained with the hydrological model SWAT from the 

Chapter 3 were considered and some scenarios related to land use changes were considered. 

These studies allowed to answer the question: 

 Are process-based models able to be integrated in the empirical models? 

 The purpose of the study developed by Segurado et al. (2018) (Appendix 1) was to 

provide a wide scale approach to basin management by interpreting the effect of isolated 

and interacting factors in several biotic elements. The combination of the hydrological 

modelling (with SWAT) to simulate hydrological and nutrient enrichment stressors and 

empirical modelling to relate these stressors with biotic indicators, was applied. This study 

demonstrates the potentialities of coupling process-based modelling with empirical 
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modelling within a single framework, allowing relationships among different ecosystem 

states to be hierarchized, interpreted and predicted at multiple spatial and temporal scales.  

Also Navarro et al. (2019) (Appendix 2) aimed to develop a Bayesian Belief Network 

(BBN) framework for modelling the ecological quality of rivers and streams in two 

European river basins located in two distinct European climatic regions: The Odense Fjord 

basin (Denmark) and the Sorraia basin (Portugal). The results obtained with the SWAT 

model were thus integrated with field measurements and empirical models in Bayesian 

Belief Networks (BBNs), to model the effect of multiple stressors on several biological 

indicators of the Sorraia river water quality and, subsequently, on their ecological status to 

model the ecological status. This study showed small impacts of climate and socioeconomic 

changes on the biological quality elements analysed. This yield a final ecological status 

similar to the baseline in the Odense case, and slightly worse in Sorraia. Results also showed 

that macrophytes and fish indices were the main responsible for a non-desirable global 

ecological status in Odense and Sorraia, respectively. By encompassing two case studies of 

very different characteristics, these BBN may be more easily adapted as decision-making 

tools for water management of other river basins. 

 

In any of these approaches here investigated and their principal advantage, is the 

possibility to test management measures in order to respond to these increased pressures 

that are predicted in the future. This approach allow also to study the aquatic system in a 

more comprehensive way (considering abiotic and biotic indicators), with the integration of 

the results from the watershed model with empirical models.  

Considering the results founded in this work it is noticeable the need to 

implementation of more drastic measures. These measures can range from upstream actions 

at the river basin scale, such as changes in agricultural practices by change of irrigated to 

rainfed crops, no-till practices or use of cover crops; to actions at the reservoir scale, for 

example by changing the amount of water available for irrigation by changing the irrigation 

source to groundwater. These measures can be implemented using the integrated modelling 

methodology here studied efficiency, and may be thereby replicable for case studies with the 

same climatic and agricultural characteristics. 

In these studies it is crucial to take into consideration the uncertainties that may be 

associated with the models itself and its implementation. In addition, the projections 

obtained from the climate models are also subject of uncertainties which are still difficult to 

quantify, largely due to being recently developed and only now are being further 

investigated. Notwithstanding the uncertainties associated with mathematical modelling, 

this methodology remains quite effective given its continuous, simplified and integrative 

approach in the study complex processes of nature such as those occurring in soils related to 

nutrients (mineralization, nitrification, denitrification , leaching, etc.), erosion, water balance 

of the river basins, in the water column, among others. 
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Therefore, this work showed that on a local scale, the Sorraia watershed and the 

Montargil reservoir in particular, will be strongly affected in terms of water quality and 

quantity in its water bodies, and the Water Directive Framework objectives will be 

extremely difficult to achieve. However, it is also concluded that the scenarios studied here 

should be adapted to this case study to better characterize the future conditions. Thus, the 

storylines studied and developed under the European FP7 project, should be adjusted in 

order to have more realistic results, or to confirm the projections founded in this work. 

Considering the high amount of details taken into account, future research is needed to 

confirm these projections or to formulate answers to questions that may arise in the future 

given the uncertainties in climate changes. 
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APPENDIX 1 - UNDERSTANDING MULTIPLE STRESSORS IN A 

MEDITERRANEAN BASIN: COMBINED EFFECTS OF LAND USE, WATER 

SCARCITY AND NUTRIENT ENRICHMENT 



Understanding multiple stressors in a Mediterranean basin: Combined
effects of land use, water scarcity and nutrient enrichment
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H I G H L I G H T S

• The interplay of water scarcity and nu-
trients in river biotic state is addressed.

• Stressors were simulated through
process-based modelling.

• Stressors, land use and environmental
background were used to model biotic
state.

• Agriculture and nutrient enrichment
showed major effects on biotic state.

• Interactions should be carefully exam-
ined to avoid wrong conclusions for
management.
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River basins are extremely complex hierarchical and directional systems that are affected by a multitude of
interacting stressors. This complexity hampers effectivemanagement and conservation planning to be effectively
implemented, especially under climate change. The objective of this work is to provide a wide scale approach to
basin management by interpreting the effect of isolated and interacting factors in several biotic elements (fish,
macroinvertebrates, phytobenthos and macrophytes). For that, a case study in the Sorraia basin (Central
Portugal), a Mediterranean system mainly facing water scarcity and diffuse pollution problems, was chosen. To
develop the proposed framework, a combination of process-basedmodelling to simulate hydrological and nutri-
ent enrichment stressors and empiricalmodelling to relate these stressors - alongwith landuse andnatural back-
ground - with biotic indicators, was applied. Biotic indicators based on ecological quality ratios from WFD
biomonitoring data were used as response variables. Temperature, river slope, % of agriculture in the upstream
catchment and total N were the variables more frequently ranked as the most relevant. Both the two significant
interactions found between single hydrological and nutrient enrichment stressors indicated antagonistic effects.
This study demonstrates the potentialities of coupling process-basedmodelling with empirical modellingwithin
a single framework, allowing relationships among different ecosystem states to be hierarchized, interpreted and
predicted atmultiple spatial and temporal scales. It also demonstrates how isolated and interacting stressors can
have a different impact on biotic quality. When performing conservation or management plans, the stressor hi-
erarchy should be considered as a way of prioritizing actions in a cost-effective perspective.
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1. Introduction

Riverine environments have been increasingly imperilled by human
activities and have become one of the most degraded systems in the
world (Sala et al., 2000; Gleick, 2003). Degradation of rivers is caused
by a multitude of individual stressors, originating from drivers such as
agriculture, urbanization and climate change, which affect ecological
patterns and processes through a highly and increasingly intricate
cause-effect chain (Hering et al., 2015; Gieswein et al., 2017). The im-
plementation of effective river management actions and appropriate
ecological restoration actions greatly relies on the ability of researchers
to disentangle this complex cause-effect chain into simple models that
are capable of providing guidance for managers (Hering et al., 2015).
For example, modelling frameworks that project multiple stressor ef-
fects on biological components of ecosystems under scenarios of chang-
es in drivers and measures may provide especially useful tools to
support decision making. Although there are several examples of such
attempts (e.g. Fernandes et al., 2016; Segurado et al., 2016), these are
still major challenges that river ecologists and managers are currently
facing.

Rivers, because of their particular nature, pose additional challenges
to assess and model the effects of multiple stressors. Multiple stressor
combinations vary deeply along river longitudinal gradients and
amongdifferent ecoregions (Schinegger et al., 2012), causing difficulties
in disentangling their effects on biotic components from natural causes
because of the co-variability of environmental conditions (Alahuhta and
Aroviita, 2016). Moreover, very often the effect of single stressors may
depend on the environmental and biotic settings where they are acting.
Several studies show biotic alterations associated with human-induced
disturbances (Branco et al., 2013) that have a strong regional pattern in
terms of the degree of impact imposed on streams. Another challenge
posed by rivers comes from their particular network structure. Rivers
have a directionality imposed by flow but they are more than “ribbons
of aquatic habitat” (Fausch et al., 2002) because they form hierarchical
dendritic network structures (Cote et al., 2010). These hierarchical, den-
dritic, directional networks are heterogeneous and continuous, with
longitudinal, lateral, vertical, temporal (Ward, 1989) gradients that
change at different scales (Frissell et al., 1986) and regions (Hering
et al., 2015). This complexity severely hampers the ability to implement
effective management actions in a river basin, especially if the goal is to
achieve holistic targets e.g., taking into account all biotic quality ele-
ments and not do an over-“ribbon-like”-simplification.

The Water Framework Directive (WFD - European Commission,
2000) enforced theuse of several biotic elements as indicators of surface
water quality as an alternative to just water quality (Moss, 2007). The
WFD involves defining biotic indicators of specific stresses, and their ag-
gregation in the so-called one-out-all-out principle, but does not neces-
sarily reflect a reliable indication of multiple stressors that recognize an
integrated assessment of ecosystem health and mal-functioning
(Hering et al., 2010). Additionally, most studies analyse solely the effect
of individual stressors - a change in the environment that forces a re-
sponse by the biological group of interest (Underwood, 1989) – on biot-
ic indicators (Birk et al., 2012), notwithstanding the fact that often the
response of an indicator to an isolated stressor is “wedge-shaped” – a
clue that there are additional pressures at work that are expressed
when the intensity of the isolated studied stressor is relatively low
(Thomson et al., 1996; Friberg, 2010). It seems thus apparent that
stressors interact, and, by doing so, create complex non-linear impacts.
River systems are chiefly altered by hydromorphological degradation
and diffuse pollution (EEA, 2012), which are themselves composed of
several individual components. River regulation is widespread and se-
verely alters flow velocity and water depth, creates vertical outflow
drops that modify thermal and hydrology regimes of river systems
and promotes the loss of original habitat which reduces heterogeneity
and hampers the movement of river species (Segurado et al., 2013;
Branco et al., 2014). Additionally, water quality is increasingly being

deteriorated through urban, industrial and agricultural waste water.
The combined impact of all these alterations has changed dramatically
the constitution of river biotic communities (Allan, 2004).

Nowadays, increasedwater demand and climate change are likely to
increase the magnitude and number of stressors acting upon river eco-
systems and increase possible interactions. The interaction of different
stressors can be manifold: additive when the response is predicted by
the sum of the responses to isolated stresses; synergistic when the com-
bined effect is greater than the sum of the effects of isolated stresses; or
even antagonistic by creating responses smaller than those predicted
(Underwood, 1989, but see Piggott et al., 2015 for an extensive review
of the concepts). Deviations from additive effects among stressors
tend to dominate, as shown by several studies (Côté et al., 2016;
Nõges et al., 2016; Schinegger et al., 2016; Teichert et al., 2016; but
seeGieswein et al., 2017 for opposing conclusions). Although studies fo-
cused on multiple stressors in aquatic environments are increasingly
found in the literature (e.g. Ormerod et al., 2010; Côté et al., 2016;
Feld et al., 2016; Jackson et al., 2016; Leal et al., 2016; Schinegger
et al., 2016; Teichert et al., 2016), there is still a generalized lack of
mechanistic understanding of stressors' interactive effects, which is a
barrier for the prediction of responses to changing environments, risk
assessment, management, impact mitigation and restoration of ecosys-
tems (Vinebrooke et al., 2004). The use of models facilitates the predic-
tion ofmanagement and conservation actions and by doing so facilitates
cost-effective measures to be selected for future application. But,
models are just a simplification of reality. This is more evident for
models applied to river networks given their intrinsic complexity. Al-
though there are large numbers of unforeseeable eventualities, the use
of models in river systems is accepted as a standard practice with rele-
vant knowledge arising from them (Feld et al., 2016).

The main goal of this work is to understand the interplay between
the effects of multiple stressors, land use, reach scale attributes and cli-
mate on several biotic quality indicators in the Sorraia Basin, a typical
Mediterranean basin located in SW Portugal. The Sorraia River is mainly
affected by water scarcity - both as a consequence of its Mediterranean
nature and an extensive water abstraction for irrigation - and nutrient
enrichment from diffuse pollution from agriculture. This case study is
part of one of the modelling framework approaches developed within
the MARS project (Managing Aquatic Ecosystems andWater Resources
Under Multiple Stress; Hering et al., 2015; Feld et al., 2016) that aims to
predict effects of multiple stressors at the basin scale under different fu-
ture climate change models, storylines and management scenarios. For
this purpose, a process-based approach is used to estimate several
stressors related to the hydrological regime and nutrient loads which
is then coupled with an empirical modelling framework to calibrate
models relating these stressors and other sources of variability with
four common WFD biotic quality elements: fish, macroinvertebrates,
macrophytes and phytobenthos. This work specifically looks at the
stressors and gradients at play in this basin, identifies the stressor hier-
archy and tests interactions among stressors in their effects on the biotic
indicators. By doing so, this work, besides highlighting some specific-
ities of working under a multi-stressor framework towards managing
entire river basins that will predictably be affected by future alterations,
advances knowledge and provides a theoretical basis that will facilitate
management and conservation planning.

2. Materials and methods

2.1. Study area

The case study focused on the Sorraia Basin (Fig. 1), which has an
area of 7730 km2 and a length of 155 km. It flows towards the Tagus
River estuary (outlet - latitude 38.83 and longitude −8.99) and is the
Tagus tributary with the largest basin area.

The Sorraia Basin is characterized by a Mediterranean climate with
an average annual air temperature of 15.2 °C that ranges from 21,6 °C
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in the summer to 9.4 in the winter. The average annual precipitation is
about 600mm, from 400mm in dry years to up to 900mm inwet years.
The average monthly precipitation is 50 mm, ranging from 25 mm in
summer months to 70 mm in winter months. Approximately 41% of
the Sorraia's basin area is forest, 28% range-grasses, 17% agriculture,
9% pine, 2% orchard, 2% urban and industrial and 1% pasture (Mateus
et al., 2009). The two reservoirs in the basin affect runoff at the gauging
stations. Natural flow is substantially reduced by water abstraction for
irrigation. The Sorraia Basin has a total of 153,099 inhabitants with a
density of 20 hab/km2, mainly concentrated in three core areas: Ponte
de Sôr (16,722 inhabitants), Samora Correia (17,123 inhabitants) and
Coruche (19,944 inhabitants) (INE, 2012).

According to the Tagus River Basin Management Plan (APA, 2012),
the main pressures on the basin are: (1) hydromorphological changes,
(2) diffuse pollution, (3) municipal discharges, (4) flow regulation and
(5) extraction of water. Key ecosystem services identified by the
RBMP are: (1) water for irrigation, (2) recreation services and
(3) waste water treatment. The ecological status of 122 water bodies,
in which the biotic component was based on the four biotic quality ele-
ments (phytobenthos, macrophytes, macroinvertebrates and fish) con-
sidered in the present work, is: 54 good (44%), 15 moderate (12%), 12
poor (10%), 2 bad (2%) and 39 (32%) unclassified. The main causes of
poor or failing status in the basin are mainly related to the water de-
mand for agricultural purposes, which in the Sorraia basin is the highest
within the Tagus River Basin (26% of total need). Nutrient loads fromag-
riculture, livestock and urban origin, mainly in the alluvial valley, are
also important potential causes of poor status in the basin.

2.2. Process based modelling - deriving stressor variables

To simulate daily variation of stressors related to hydrological pro-
cesses and nutrient loads, the Soil and Water Assessment Tool (SWAT;
Neitsch et al., 2005) model was used through its ArcSWAT interface
for ArcGIS (ESRI, Redlands, CA, USA). SWAT is a process-based semi-
distributed watershed model focused on land management at the
reach or basin scale. It has growth parameters for about 100 plant spe-
cies with crop interest and a vegetation growth model developed by

the Grassland Laboratory of the USDA (United States Department of Ag-
riculture). Topologically, SWAT divides the basin into subareas that are
assumed to be homogeneous in their hydrologic response units (HRU)
and infiltration or groundwater flow is computed based on empiric or
semi-empirical formulations (as the SCS rainfall-runoff curves or soil-
shallow aquifer-river transfer times). The hydrology of the model is
based on the water balance equation, which includes runoff, precipita-
tion, evaporation, infiltration and lateral flow in the soil profile.

The calibration procedure entails adjustments to themodel parame-
ters to obtain the best possible adherence of the modelled data to the
measured data. To a priori determine which parameters should be ad-
justed in the model, flows modelled and observed in the same location
and during the same period are compared and deviations interpreted.
Model results were compared with data available from twomonitoring
stations from the Sorraia Basin: Moinho Novo and Ponte Vila Formosa
(SNIRH; http://snirh.apambiente.pt/; accessed 30 July 2017). The period
considered for the calibration and validation analyses was between
1996 and 2015. The coefficient of determination between the monthly
mean flow modelled and observed was R2 = 0.69 for Moinho Novo
and R2 = 0.32 for Ponte Vila Formosa; bias was −0.56 for Moinho
Novo and 0.24 for Ponte Vila Formosa; the Nash-Sutcliffe efficiency
(NSE) coefficient was 0.68 forMoinho Novo and 0.02 for Ponte Vila For-
mosa. For Total N, only the Moinho Novo had sufficient time series of
data available for a proper estimation of model performance. For the
mean annual mean of this parameter, the coefficient of determination
was R2 = 0.59, bias was 0.22 and NSE was−0.98.

Available GIS maps of topography, land use, soil type and climate, in
the study areawere used as inputs to the SWATmodel. Topographywas
derived from the Shuttle Radar TopographyMission, with 90-m resolu-
tion (Jarvis et al., 2008). Soil physical properties were derived from the
Portuguese Soil maps and Land use Capacity (http://www.dgadr.pt/
cartografia; accessed 30 July 2017). Land use classification, adapted to
the SWAT classification, was derived from the GSE Land M2.1 (Mateus
et al., 2009), with 20 and 300-m resolution. Climatic maps, including
daily or hourly precipitation, temperature, relative humidity and wind
speed were derived from SNIRH (http://snirh.apambiente.pt/; accessed
30 July 2017).

Fig. 1. River Tagus Basin, with a highlight of the study area (Sorraia Basin) and the location of sampling sites.
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2.3. Empirical modelling - linking stressors to biotic indicators

To encompass awider environmental and stressor gradient, we used
data from the whole Tagus River Basin, where the Sorraia Basin is in-
cluded, to fit empirical models relating biotic quality indicators, derived
from biological monitoring data, with stressors. The dataset comprised
141 sites (Fig. 1) from theWFDbiomonitoringprogram(Portuguese En-
vironmental Agency, APA), with two sampling occasions (2010–11).
Site selection included a set of least-disturbed sites used as reference
sites. Remaining siteswere selected to cover, asmuch as possible, differ-
ent river types and the whole gradient of global disturbance measured
in ordinal categories and based on hydromorphological alteration,
water quality degradation and connectivity disruption.

The dataset included information on national biotic quality indices
for four biotic quality elements: fish, macroinvertebrates, macrophytes
and phytobenthos. For phytobenthos the national biotic quality index
is the diatom metrics IPS (Indice de Polluosensibilité Sécifique)
(Cemagref, 1982; Almeida et al., 2014). This index takes into account in-
dividual counts and species richness of all diatom taxon and it is an in-
dicator of eutrophication, organic matter, acidification and salinity
(Almeida et al., 2014). The national biotic quality index formacrophytes
is the IBMR (Macrophyte Biological Index for Rivers), which is based on
species abundance, ecological amplitude and trophic indicator value
(Haury et al., 2006; Aguiar et al., 2014). It is considered a good indicator
of nutrient inputs and/or heavy organic pollution (Haury et al., 2006).
The macroinvertebrate national biotic quality index is the IPtI (Rivers
Biological Quality Assessment Method — Benthic Invertebrates)
(Ferreira et al., 2008; Feio et al., 2014). This index is based on the follow-
ing metrics: number of taxa, species evenness, number of EPT (Ephem-
eroptera, Plecoptera, Trichoptera) families, evenness, IASPT (Iberian
Average Score per Taxon index= IBMWP / number of families), log (se-
lected ETD+1)or EPTCD (log abundance of selected families of Ephem-
eroptera, Plecoptera, Trichoptera, Diptera, Coleoptera) (Feio et al.,
2014). The index was developed using reference conditions based on
land use, riparian condition, sediment load, hydrological regime, acidifi-
cation and toxicity, morphological condition, nutrient enrichment and
river continuity (Feio et al., 2014). The national biotic quality index for
fish fauna is the F-IBIP (Fish-based Index of Biotic Integrity for Portu-
guese Wadeable Streams) (INAG and AFN, 2012; Segurado et al.,
2014). The F-IBIP is a multimetric index based on parameters derived
from fish assemblage composition and ecological functional groups
(guilds) which differ among six fish-based river types. The index is
based on twelve metrics scored separately by fish-type: number of na-
tive species, number of intolerant and intermediate species, % alien indi-
viduals, % intolerant individuals, % intolerant and intermediate
individuals, % intolerant and intermediate Cyprinid species, % omnivo-
rous individuals, % invertivorous individuals (excluding tolerant spe-
cies), % potamodromous individuals, % reproductive generalist and
“non-spawner” individuals, % lithophilic individuals and % water col-
umn individuals. The index was shown to be mainly responsive to
water abstraction, presence of dams, presence of weirs, toxic risk and
water quality (Segurado et al., 2014). The biotic quality indices were
transformed into an ecological quality ratio (EQR) computed as the
ratio between the original value of biotic quality index for a site and
the value for reference or least disturbed sites of the same typology.
An EQR close to zero indicates a site with a biological community that
strongly deviates from those found in reference conditions.

The sampling protocol for phytobenthos followed European stan-
dard methods (CEN, 2003a). Most samples were collected in spring/
summer. At least 5 pebbles covering in total at least 100 cm2 of colo-
nized surface were sampled per site. Diatoms were used as proxies for
phytobenthos and counting of the cells followed standard procedures
(CEN, 2004), with a minimum of 400 valves identified and counted.
Macrophytes were sampled according to the European standards
EN14184:2003 (CEN, 2003b) and EN14996:2006 (CEN, 2006). One-
shot surveys per site were performed in spring–summer season (April

to September). The sampling of macroinvertebrates followed the stan-
dard protocol established by Instituto da Água for the implementation
of the Water Framework Directive in Portugal (INAG, 2008). A 50 m
reach representing habitat diversity was defined for each site. Macroin-
vertebrateswere sampledwith a hand-net (0.25mopening and 500nm
mesh size), each sample comprising six composite collections. Identifi-
cation was performedmainly at the genus level. Fish samplingwas per-
formed by electrofishing following standard procedures (CEN, 2003c)
for assessing fish species composition and abundance. Each site was
sampled during spring–summer base flow. The fishing teamprogressed
upstream in a zigzag pattern with single passes covering all present
habitats (riffles, pools). Minimum sampled length was 20 times the
mean wetted width of the channel.

Fifteen predictor variables were selected, including four land use
pressure variables, two nutrient stressors, four hydrological stressors
and five variables describing natural environmental variability
(Table 1). Environmental variables were compiled from the CCM2
river network database (Vogt et al., 2007) for all river segments (river
stretch between confluences). Land use pressures were derived from
the CORINE landcover database (European Environmental Agency,
2010) as the percentage of area derived from awide spatial scale corre-
sponding to the whole upstream catchment. These pressure variables
were used as a proxy of different environmental stressors (e.g. nutrient
enrichment, water abstraction, sediment pollution, damming, flow reg-
ulation) rather than a stressor in itself.We considered it important to in-
clude these variables as predictors to control for the effects of other
sources of variability that were not measured or modelled. The four
land use variables were selected based on their potential effects on riv-
ers. Agricultural land may be considered essentially a proxy for many
different kinds of diffuse pollution in the form of nutrients (e.g. fertil-
izers, organic wastes from livestock activities) and toxic substances
(e.g. pesticides). In addition, irrigation crops are a proxy of several hy-
drological alterations (e.g. water abstraction, patterns of extreme flow
events). Urban areas are mainly a proxy for different types of point
source pollution (e.g. from domestic and industrial wastes). Forests
are essentially a proxy of several processes that contribute to reduce
sediment in rivers and filter water pollutants. The percentage of area
in the upstream catchment was computed with the RivTool software
v1.0.0.1 (Duarte et al., 2016).

Table 1
List of candidate predictor variables. VIF – Variation Inflation Value with a threshold value
of 3.

Predictor variables Units Range VIF
selection

Land use pressures
Agriculture in the upstream catchment % 0–96 Yes
Irrigated crop in the upstream
catchment

% 0–19 Yes

Forest in the upstream catchment % 0–83 Yes
Urban in the upstream catchment % 0–12 Yes

Nutrient stressors
Total phosphorus annual mean mg/l 0.00–1.46 No
Total nitrogen annual mean mg/l 0.95.69 Yes

Hydrological stressors
Mean annual Flow m3/s 0.13–129.01 Yes
Low flow pulse – number of events . 0–40 Yes
Low flow pulse – mean duration (days) Number of

days
0.00–106.00 Yes

Mean annual flow alteration % 0–35.56 Yes

Natural environmental variability
Distance from source km 2–981 No
River slope % 0.01–75.01 Yes
Size of the upstream catchment km3 8–67,051 Yes
Mean annual temperature °C 9.9–17.2 Yes
Mean total annual precipitation mm 628–1552 No
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The nutrient-related variables included two commonly used indica-
tors of nutrient stress: total nitrogen and total phosphorus. Both
stressors are main causes of eutrophication effects such as phytoplank-
ton blooms and accelerated plant growthwhich results in low dissolved
oxygen. The selected hydrological stressor indicators - mean annual
flow, mean annual number of low flow events, mean annual duration
of low flow events and mean annual flow alteration - are four uncorre-
lated measures of water scarcity. Low pulses were defined as periods
during which the daily mean flow falls below the 10th percentile of
the mean annual flow.

Because biotic indicators are affected by natural environmental gra-
dients, it is crucial to control this effect when testing relationships with
stressor variables. For the Tagus Basin we considered two main natural
environmental gradients as themost relevant: a climatic gradient and a
river longitudinal gradient. These gradients, expressed in our datasets
by five environmental variables (Table 1), were included as candidate
predictors in the empirical modelling framework to control as much
as possible for the effect of natural background.

We found skewness problems in almost all predictors and therefore
all explanatory variables were transformed using Box-Cox transforma-
tion (Box and Cox, 1964) followed by variable centering (mean = 0)
and standardization (SD=1), to express regression coefficients as stan-
dardized effect sizes. Collinearity among predictor variables was
assessed through the use of VIFs (Variation Inflation Value) with a
threshold value of 3 (Zuur et al., 2010).We used this criterion to exclude
predictors in a stepwise fashion, by starting to remove the predictor
with the highest VIF and repeating the VIF computation until all
variable's VIFs were b3. We used the function vifstep of the package
usdm that automatically performs the stepwise deletion based on a
VIF threshold defined by the user (Naimi, 2015). Twelve variables
were retained as candidates for inclusion in models (Table 1).

We ran several alternative empirical approaches following the over-
all procedure proposed by Feld et al. (2016) to analyse the impacts of
multiple stressors in aquatic biomonitoring data. We performed a first
exploratory analysis by running two machine learning techniques,
Boosted Regression Trees (BRT; Elith et al., 2008) and Random Forests
(RF; Breiman, 2001). After selecting themost relevant predictor variable
candidates from the previous analyses, we quantified and tested both
individual and multiple stressor effects through Linear Mixed Models
(LMM; Zuur et al., 2009) using site as a random effect. Model selection
was based on a multi-model inference procedure (Grueber et al.,
2011) using the Akaike weight as a measure of the probability of the
samemodel to be selected as the best approximatingmodel using an in-
dependent dataset (Burnham and Anderson, 2002). We ran all combi-
nations of models with no more than six predictor variables, to avoid
selecting overly complex models. Pairwise interaction terms between
hydrological and nutrient stressorswere also included as candidate var-
iables in themodel selection procedure. Finally, the best approximating
model, i.e. with the highest Akaike weight, was selected. LMMwas also
used to test pairwise interactions, i.e., to test significant deviations from
additive effects and identify the interaction type (synergistic, antagonis-
tic and opposing) based on the direction and intensity of such devia-
tions. We included a year variable in all models to control for annual
variability. In LMMwe included year as a fixed factor because the num-
ber of classes (2 years)was not sufficient to use the variable as a random
factor.

To allow comparisons of the goodness-of-fit among the threemodel-
ling techniques, we computed the correlations between observed and
fitted EQR values for each biotic quality element.We also computed cor-
relations between observed and predicted values using validation data.
The validation procedure varied among the modelling technique. For
BRT, the correlations were computed as the mean correlation of a 10-
fold cross-validation procedure (see e.g. Elith et al., 2008 for further de-
tails). For RT, average predictions of “out-of-bag” samples used in each
tree developmentwere used to compute the correlationswith observed
EQR values. For LMM, we used a jackknife-based, or leave-one-out,

cross-validationprocedure to compute correlations of validation predic-
tions with the observed response.

We used the threemodelling approaches to rank the relative impor-
tance of stressors, land use, climate variables and stream attributes for
each biotic indicator. In BRT, the importance of each variable in the
model was estimated by averaging the number of times each variable
was selected for splitting a tree as well as the squared improvement
resulting from these splits (Friedman, 2001). The importance in RF
models was based on Breiman-Cutler permutations in which, for each
tree, the prediction errors are computed for “out-of-bag” data using
both original and randomly permuted cases. Variable importance is
then defined as the difference between the error rate of the original
and permutated data averaged over all trees in the forest (Ishwaran,
2007). Because in this case low values of importance may take a nega-
tive sign, all negative values were truncated to zero. The relative impor-
tance of predictor variables in LMM was assessed based on the
probability of each variable to be included in the best approximating
models, estimated by summing the Akaike weights of all candidate
models where the variable was included (Burnham and Anderson,
2002). For comparison purposes, values of importance were trans-
formed in percentages in relation to the sum of importance values.
The variables were then ranked for eachmodelling technique and biotic
quality element and a mean rank was computed for each variable. In-
consistency amongmodels in the rank of importancewas then comput-
ed as the percentage of the difference between maximum and
minimum position in the rank in relation to the maximum possible dif-
ference (equal to total number of variables). By checking the consisten-
cy across modelling techniques of the importance of predictor variables
we assessed the uncertainty of predictions driven by the choice of the
modelling technique.

All the analyses were performed with R version 3.3.2 (R Core Team,
2017) using packages gbm (Ridgeway, 2007) and dismo version 1.1-4
(Elith et al., 2008; Hijmans et al., 2013) for running BRT,
randomForestSRC (Ishwaran and Kogalur, 2017) for running RF,
lmerTest (Kuznetsova et al., 2014) and lme4 (Bates et al., 2015) to run
LMM and MuMIN (Bartoń, 2016) to perform multimodel inference.
We used R codes similar to those provided by Feld et al. (2016).

3. Results

3.1. Performance of empirical models

The empiricalmodels relating the EQR of each biotic quality element
with environmental, land use and stressor variables showed an overall
good adjustment to the data (Fig. 2). Models fitted with LMM tended
to show the best explanatory power. With BRT and RF, especially for
phytobenthos, macrophytes and macroinvertebrates, fitted values
tended to be biased towards an overestimation of EQR, especially for
lower response values. These tendencies are confirmed by the correla-
tions between fitted and observed EQR values (Fig. 3). Correlations
using training data ranged from 0.81 for macrophytes using BRT and
0.99 for Fish using LMM. Correlations using validation data were
lower, ranging from 0.27 for macrophytes using R and 0.81 for Fish
using LMM. These validation correlations showed that models fitted
with LMM also tended to show the best predicted power for the four bi-
otic quality elements.

3.2. Relative importance of variables

Among all four biotic quality elements and modelling techniques,
the variables most frequently ranked in the first three positions of rela-
tive importance (Tables 2 to 5) were % of agriculture (for phytobenthos,
macroinvertebrates and fish), and the annual mean temperature (for
macroinvertebrates and fish). The variables most frequently ranked in
the last three positions of relative importance were Flow alteration
(all biotic quality elements) and Number of low flow events
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(phytobenthos andmacroinvertebrates). The variable year was the var-
iable thatwas rankedmore inconsistently amongmodelling techniques.
Partial responses of each biotic indicator in each model are shown in
Supplementary data (Appendix Aces).

For phytobenthos EQR (Table 2), two land use variables, % agricul-
ture and % urban, were consistently the most important predictor vari-
ables among the three models. A stressor variable related to water
scarcity (mean duration of low flow events)was ranked in the third po-
sition, followed by river slope andmean annual temperature. The % for-
est, number of low flow events and flow alteration were consistently
the least important variables. Year was the variable that showed the
most inconsistent rank of importance among the three models, ranked
in the fourth position in LMM and in the 2 last positions in BRT and RF
models.

The most important predictor variables affecting macrophytes EQR
(Table 3) were a river segment attribute (river slope), a land use vari-
able (% forest, mostly cork-oak land) and a hydrological stressor
(mean annual flow), although inconsistently ranked in first, second or
third place among the three models. Mean annual temperature, % irri-
gated croplands and flow alteration were consistently ranked in the
last three positions among themodels. Again, year showed themost in-
consistent rank of importance among the three models.

For macroinvertebrates EQR (Table 4), the predictor variables
ranked in the first three positionswere % agriculture, mean annual tem-
perature and % of irrigated croplands. In this case, outputs from LMM
showed an overall inconsistencywith those fromBRT and RF. For exam-
ple, year was ranked in the first position in LMM but in the last three

positions in BRT and RF models. Size of catchment, flow alteration and
number of low flow events were ranked in the last three positions, al-
though their ranking showed weak consistency among methods.

Mean annual temperature, total N and % agriculture were the vari-
ables that had the highest rank of importance for fish EQR (Table 5).
Mean duration of low flow events was the second most important
stressor, although showing the highest inconsistency among models,
ranked in the third from the last position according to the BRT model.
Mean annual flow, year and flow alteration were ranked in the last
three positions, but their rank order showed weak consistency among
methods.

3.3. Effects sizes and interactions

The variables included in the best approximating LMM for each biot-
ic quality element are shown in Table 6.Mean annual temperature, river
slope, % agriculture and total N were the most frequent selected vari-
ables, all included in two of the four models. The predictor variables se-
lected in the best approximating model and their effect sizes are not
necessarily consistent with the ranks found in Tables 2–5 because
these ranks take into account a large number of models with different
combinations of variables.

The variables included in the phytobenthos model were river slope
with a positive effect, two land use variables, % agriculture and %
urban, both with a negative effect, and year. Percent agriculture and
the % urban showed the highest effect size.

Fig. 2. Fitted versus observed values for each model and biotic quality element. a) Boosted Regression Tree; b) Random Forests; c) Linear Mixed Models.
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Fig. 3. Correlation between fitted and observed values for eachmodel type and biotic quality element, based on the training dataset (left graph) and a validation procedure (right graph).

Table 2
Relative importance of variables as predictors of phytobenthos EQR in each model (BRT – Boosted Regression Trees; RF - Random Forests; LMM - Linear Mixed Models), mean rank of
importance among models and inconsistency among models in the rank of importance (percentage of the difference between maximum and minimum position in the rank in relation
to the total number of variables). Red indicates higher ranking and blue indicates lower ranking.

Variable BRT RF LMM Mean rank Inconsistency (%)

% agriculture 23.13 35.91 17.35 1.00 0.00

% urban areas 15.61 19.60 16.99 2.00 0.00

Mean duration of low flow events 6.42 8.57 6.44 5.33 38.46

River slope 6.80 4.28 10.97 5.67 30.77

Mean annual temperature 7.29 3.57 6.13 6.00 30.77

Mean annual flow 10.49 5.49 4.64 6.00 46.15

Size of catchment 7.25 6.35 4.65 6.33 23.08

% irrigated croplands 7.26 3.55 5.84 7.00 30.77

Total N 5.59 7.44 4.53 7.67 46.15

Year 1.49 0.00 9.38 9.67 69.23

% forest 4.39 3.17 4.47 10.33 7.69

Number of low flow events 4.27 1.91 4.35 11.33 7.69

Flow alteration 0.00 0.15 4.27 12.67 7.69

Mean inconsistency (%) 26.04
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The macrophyte model included also river slope with a positive ef-
fect, two stressor variables, total N and number of low flow events,
both with a negative effect, and year. A significant interaction between
total N and number of low flow events was found. The positive sign of
the interaction regression coefficient, which goes in the opposite direc-
tion of the individual effects, indicates an antagonistic interaction be-
tween the two stressors, i.e., one stressor attenuates the effect of the
other. This is confirmed by the 2D plot representing the co-effect of
the two stressors on macrophytes EQR (Fig. 4). This plot also shows an
opposing interaction, i.e., when one of the stressors is above a certain
level, the effect of the other is inversed. However, most cases are located
in the third quadrant of the plot, which indicates that an antagonistic in-
teraction dominates.

The variables included in thebest approximatingmodel formacroin-
vertebrates were mean annual temperature, with a negative effect, two
land use variables, % agriculture and % irrigated cropland, both with a
negative effect, flow alteration, with a positive effect, and year. Percent
agriculture and year showed the highest effect size.

The fish model included also mean annual temperature, with a pos-
itive effect, and two stressor variables, total N andmean duration of low
flow events, both with a negative effect. A significant interaction be-
tween total N and mean duration of low flow events was found.

Similarly to the macrophytes model, the positive sign of the interaction
regression coefficient, with an opposite sign of the individual effects, in-
dicates an antagonistic interaction between the two stressors. This is in-
dicated by the 2D plot representing the co-effect of the two stressors on
fish EQR (Fig. 4), showing that the colour change pattern along one var-
iable axis changes along the other variable axis. This plot also shows an
opposing interaction, althoughmost cases are located in the third quad-
rant of the plot, which indicates a dominant antagonistic interaction.

4. Discussion

Managing such heterogeneous complex environments like river sys-
tems is a mammoth task that has to deal with a high degree of system-
specificity and with mixed gradients of different nature (e.g. climatic,
hydromorphological, biotic) that change the effect of a stressor along
them. This translates into an impossibility of applying static measures
with a homogeneous effectiveness throughout the stressor gradient,
as the stressor itself changes its effect along other stressor gradients or
even along environmental gradients. Scientists and managers should
then understand how the response changes along these isolated or
combined gradients, to adapt management actions to tackle stressors
according to the specific gradient found in the basin of interest. The

Table 3
Relative importance of variables as predictors of macrophytes EQR in eachmodel (BRT – Boosted Regression Trees; RF - Random Forests; LMM - Linear MixedModels), mean rank of im-
portance amongmodels and inconsistency amongmodels in the rank of importance (percentage of the difference betweenmaximumandminimumposition in the rank in relation to the
total number of variables). Red indicates higher ranking and blue indicates lower ranking.

Variable BRT RF LMM Mean rank Inconsistency (%)

River slope 17.80 22.95 15.56 2.33 15.38

% forest 18.76 31.63 8.06 2.67 30.77

Mean annual flow 24.05 30.12 8.02 3.00 38.46

% urban areas 15.82 10.08 7.39 5.00 23.08

Number of low flow events 4.66 0.16 11.45 6.33 61.54

Total N 5.51 0.51 6.52 6.67 23.08

% agriculture 2.41 2.49 5.18 7.33 30.77

Mean duration of low flow events 5.22 1.17 5.09 7.33 30.77

Size of catchment 1.77 0.43 8.95 7.67 46.15

Year 0.53 0.46 10.28 7.67 69.23

Mean annual temperature 1.99 0.00 4.46 10.67 23.08

% irrigated croplands 1.48 0.00 4.78 11.67 15.38

Flow alteration 0.00 0.00 4.26 12.67 7.69

Table 4
Relative importance of variables as predictors ofmacroinvertebrates EQR in eachmodel (BRT – Boosted Regression Trees; RF - Random Forests; LMM- LinearMixedModels),mean rank of
importance amongmodels and inconsistency amongmodels in the rank of importance (percentage of the difference betweenmaximum andminimum position in the rank in relation to
the total number of variables). Red indicates higher ranking and blue indicates lower ranking.

Variable BRT RF LMM Mean rank Inconsistency (%)

% agriculture 23.88 31.63 18.42 1.33 7.69

Mean annual temperature 9.69 9.39 9.11 3.00 15.38

% irrigated croplands 9.21 12.49 7.89 3.33 23.08

% urban areas 7.85 7.31 6.72 5.33 23.08

Total N 7.35 9.98 4.15 6.33 46.15

River slope 4.70 5.47 8.70 7.33 53.85

Year 6.18 2.68 18.74 7.33 76.92

Mean annual flow 7.83 4.77 3.67 8.67 53.85

% forest 7.50 4.58 3.99 8.67 30.77

Mean duration of low flow events 6.58 6.35 3.47 9.00 53.85

Size of catchment 6.55 5.00 3.96 9.33 23.08

Flow alteration 0.95 0.36 7.00 10.33 53.85

Number of low flow events 1.73 0.00 4.18 11.00 38.46

Mean inconsistency (%) 38.46
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work presented herein had the purpose of identifying difficulties and
providing means to understand stressor importance and response vari-
ation along interacting stressor gradients.

4.1. Relative importance of variables

In the addressed case study there was a high impact of land use in
the upstream drainage area on biotic indicators (see Liuzzo et al.,

2015; Santos et al., 2015 and Sellami et al., 2016 for concurring previous
findings). This was evident for all the studied biotic elements, and it is a
consequence of the fact that land use variables tend to be a proxy for
multiple stressors (Feld et al., 2016). For example, the presence of crop-
lands is a proxy for very distinct single stressors, such as diffuse pollu-
tion, water abstraction and riparian habitat degradation that even may
act synergistically. Additionally, both hydrologic and climatic variables
were deemed important predictor variables, although for different biot-
ic elements. This is understandable (Biggs et al., 2005), expected
(Bonada and Resh, 2013; Gasith and Resh, 1999; Hershkovitz and
Gasith, 2013; Wada et al., 2011) and previously demonstrated
(Segurado et al., 2016). Water abstraction effects can severely affect
lotic systems (Dewson et al., 2007; Wooster et al., 2016; Benejam
et al., 2010; Lange et al., 2014), especially in Mediterranean regions
and under the effect of climate and socioeconomic changes.

Albeit the aforementioned commonalities, all biotic elements varied
in terms of the top ranking variables. Specifically, macrophytes were
structured according to river slope, a variable that reflects the natural
gradient between headwaters and lowland rivers – it was the only biotic
element forwhich a “structural” variable ranked high in terms of impor-
tance. This is because of the ecology of this biotic element and the mul-
tiple effects of river slope – e.g. water velocity, sediment transport and
residence time – that creates a very marked longitudinal variation in
both the composition and structure of the aquatic and riparian vegeta-
tion communities (Manolaki and Papastergiadou, 2013). Fish, on the
other hand, were the only element to rank a stressor (total N) among
the most important variables. This is because total N is related to the
surrounding land use and those are also closely linked to known chang-
es in the fish assemblage following structural “along-the-river” alter-
ations. An increase in nutrient concentration may lead, in high
insolation areas, to the proliferation of submerged macrophytes and to
consequent severe impacts on freshwater fish (Pusey and Arthington,
2003). Branco et al. (2016) also found that, using dissolved oxygen as
a proxy in an experimental setup, the input of organic pollution and
subsequent degradation seemed to affect fish activity levels. It is
known that in some cases the biotic quality status indicators give clear
and expectable responses to human induced disturbances, but for
other indicators there are weak responses to human stressors, with
the strongest responses related to natural environmental variability
and spatial processes (Alahuhta and Aroviita, 2016).

Apart from pure biological factors, other causes related to methodo-
logical options may also contribute to the observed differences among
biotic quality elements in their responses to predictor variables.

Table 5
Relative importance of variables as predictors of fish EQR in each model (BRT – Boosted Regression Trees; RF - Random Forests; LMM - Linear Mixed Models), mean rank of importance
among models and inconsistency among models in the rank of importance (percentage of the difference between maximum and minimum position in the rank in relation to the total
number of variables). Red indicates higher ranking and blue indicates lower ranking.

Variable BRT RF LMM Mean rank Inconsistency ( % )

Mean annual temperature 57.92 45.82 21.67 1.00 0.00

Total N 12.44 14.73 16.41 2.67 7.69

% agriculture 14.12 16.44 6.57 3.33 30.77

% forest 6.20 3.77 6.70 4.67 15.38

Mean duration of low flow events 0.26 4.64 8.41 6.00 61.54

River slope 2.14 3.02 5.15 7.00 15.38

% irrigated croplands 0.84 3.90 5.13 7.67 30.77

Number of low flow events 0.48 2.19 6.62 8.33 38.46

% urban areas 2.56 2.37 4.52 8.33 46.15

Size of catchment 1.33 2.57 4.36 9.67 38.46

Mean annual flow 1.63 0.54 4.42 10.00 38.46

Year 0.08 0.00 5.25 10.67 46.15

Flow alteration 0.00 0.00 4.79 11.67 23.08

Mean inconsistency (%) 30.18

Table 6
Summary of the best approximating LMM model, including the standardized effect size
(SES), the standard error of the estimate (SE), the degrees of freedom (df), the t-test value
of the coefficient and its associated p-value.

Variable SES SE df t-Value p-Value

Phytobenthos
(Intercept) −

58.150
39.805 57.300 −1.461 0.150

River slope 0.029 0.016 87.320 1.883 0.063
% agriculture −0.046 0.017 85.760 −2.712 0.008
% urban −0.042 0.016 82.680 −2.562 0.012
Year 0.029 0.020 57.300 1.481 0.144

Macrophytes
(Intercept) −

72.876
32.106 20.430 −2.270 0.034

River slope 0.037 0.014 45.370 2.744 0.009
Number of low flow events −0.031 0.012 55.000 −2.559 0.013
Total N −0.023 0.014 47.360 −1.692 0.097
Year 0.037 0.016 20.430 2.298 0.032
Number of low flow events ×
total N

0.027 0.015 41.750 1.768 0.084

Macroinvertebrates
(Intercept) −

279.103
36.871 50.990 −7.570 b0.001

Mean annual temperature −0.043 0.023 132.600 −1.885 0.062
% agriculture −0.100 0.021 132.250 −4.726 b0.001
Flow alteration 0.035 0.019 131.810 1.853 0.066
% irrigated croplands −0.039 0.022 130.940 −1.748 0.083
Year 0.139 0.018 50.990 7.587 0.000

Fish
(Intercept) 0.560 0.028 79.960 20.283 b0.001
Mean annual temperature −0.212 0.029 79.960 −7.306 b0.001
Mean duration of low flow
events

−0.012 0.026 86.130 −0.438 0.662

Total N −0.086 0.029 81.880 −2.928 0.004
Mean duration of low flow ×
total N

0.060 0.028 62.190 2.156 0.035
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Differences may arise because of distinct rates of assemblage change in
the presence of stressors, i.e., they might be attributed to the temporal
resolution at which predictor variables were compiled. Phytobenthos
and macroinvertebrates, given their shorter life cycles in comparison
tomacrophytes and fish, are expected to respondmore promptly to en-
vironmental change and hence to respond to shorter time windows.
This might explain why selected LMM includedmore land use variables
and fewer individual stressors in the case of phytobenthos andmacroin-
vertebrates. The time window (annual mean) to derive individual
stressors may not be the most adequate for these organisms. Responses
may also be influenced by the spatial scale atwhich variableswere com-
piled or simulated (e.g. HRU size in SWAT simulations), mainly because
of different dispersal abilities among organisms. For example, fish are
known to be more responsive to stressors acting at wider spatial scales
than other organisms (Harris, 1995) because they can easily move to
more favourable environments in face of local disturbances. Therefore,
differences found among biotic quality elements in their response to
predictor variablesmay have been partially driven from the use of com-
mon temporal and spatial resolutions in the modelling framework.

The influence of sampling protocols and site selection in model pre-
cision and accuracy, and hence in their generality and predictive power,
cannot be discarded (Stevens & Olsen, 2004; Hughes & Peck, 2008;
Hughes et al., 2000, 2012). Even scientifically informed sampling de-
signs involved in biomonitoring program are necessarily constrained
by funding resources (limiting the number of samples), logistics (e.g.
site accessibility) and subjective human decisions (Hughes & Peck,
2008). Sampling decisions that originated data used in the present
work are no exception and their effects on models are inevitable. On
the other hand, the global disturbance gradient that considered for sam-
pling site selection of the biomonitoring database might not totally re-
flect the gradient of stressors that were dealt with in this work.
Additionally, because the case study basin is dominated by aMediterra-
nean landscape which has been shaped from centuries of human activ-
ities, there is an overall lack of minimally disturbed catchments
(Segurado et al., 2011) which necessarily shortens stressor gradients,
with implications on modelling results (Feld et al., 2016; Leitão et al.,
2017). Despite all the potential methodological effects on the results
of the several modelling approaches, a certain degree of confidence is
ensured given that the biomonitoring data used in this work was origi-
nated from sampling protocols that strictly followed European

standards. In addition, sampling protocols for the four biotic quality el-
ements were all WFD compliant which allowed the biotic quality indi-
ces to be subjected to the WFD intercalibration process to harmonize
quality class boundaries with other European indices (Aguiar et al.,
2014; Almeida et al., 2014; Feio et al., 2014; Segurado et al., 2014).

4.2. Stressor interactions

The present paper also aimed at identifying and understanding
stressor interactions at play in the Sorraia Basin. Significant stressor in-
teractions (LMM)were found for two biotic elements,macrophytes and
fish. In both cases the interactions were found to be opposing (see Feld
et al., 2016). But, if there is a focus on the data supported portion of the
stressors gradients, it becomes evident that, in fact, the stressor interac-
tion taking place is mostly antagonistic (see Feld et al., 2016). So, the in-
teraction along the full gradient of the two interacting stressors is
opposing but it changes along the gradient.When looking at partial gra-
dients the interaction may differ from opposing. This highlights the
need to analyse the full gradient of the stressors (Branco et al., 2016;
Schinegger et al., 2016). Furthermore, the resulting opposing interaction
might be a mathematical artefact of themodel in the portion of the gra-
dient under-represented by data. This is most likely to be the case of the
interactions detected in this study. In fact, the plots representing inter-
actions in a model must be interpreted very carefully. Original data
must always be projected in the plot to check if there are regions of
the modelled relationship that are not well supported by the data.

A synergistic interaction between hydrological stressors and nutri-
ents, rather than the observed antagonistic interaction, was expected.
This is because water scarcity would expectedly amplify the effects of
nutrient loads by decreasing the natural diluting property of rivers
(Blasco et al., 2015). An important aspect to be considered in the partic-
ular case of pairwise interactions in the context of regression-based
modelling, which is the typical approach when analysing biological
monitoring data, is that significant deviations from additive effects
occur when one variable affects the slope of the response to the second
variable. This peculiarity is very distinct from interactions inferred from
typical factorial designs of controlled experiments,which do not involve
estimates of response rates, but usually simple comparisons between
stressed and unstressed conditions. So, one possible explanation for an-
tagonistic interactions among stressors is that when stressor 1, e.g. total

Fig. 4. Plots showing the pairwise interactions in the LMMmodel formacrophytes (left) andfish (right). Response variables are expressed by colour intensity, varying from lowEQR values
(red) to high EQR values (blue). Dots represent the true observations andmay be used to checkwhich portion of the plot ismore supported by data. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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N, is acting alone, the slope of the increase of the effect along the stressor
gradient is expectedly steeper because at low stressor intensity, the bi-
otic quality is at its maximum (low values of both stressors), i.e., for a
small increase of the stressor there is a more pronounced decrease in
the biotic quality. When stressor 2, e.g. duration of low flow events, is
acting the rate of the increase of the effect along the stressor 1 gradient
might be weaker because even at low values of stressor 1, the biotic
quality is already being affected by stressor 2. Additionally, it is expected
that when a single stressor dominates, the biotic response may reach a
level beyondwhich it will not decrease even in the presence of a second
stressor. In fact, a recent meta-analysis found that antagonistic effects
among stressors prevail in the literature focused on freshwater ecosys-
tems (Jackson et al., 2016). The antagonistic effect found between hy-
drological and nutrient stressors does not necessarily mean that the
presence of one stressor attenuates the effect of the other uniformly
along the stressors' gradient (Brown et al., 2014). It is often claimed
that efforts to mitigate stressors are least effective in systemswhere an-
tagonistic interactions prevail (Brown et al., 2013; Piggott et al., 2015)
but this is very contingent on the position of the data along stressor gra-
dients, which determines whether antagonistic effect deviates more or
less from the additive effect.

4.3. Implications for management

The results of this work clearly highlight the importance of having
more than one biotic element as a management/conservation goal, or
as an indicator for management/conservation prioritization, as each el-
ement responds very differently to the diverse categories of environ-
mental variables. Additionally, it is important to consider several
environmental variables of each category (e.g. hydrology, climate,
land-use), as for some elements some variables of the same category
can either rank high or low in termsof importance in explaining the reg-
istered variability, and their relative positions may drastically change
between biotic elements. The overall image is important to fully ascer-
tain a basin status and to define management/conservation practices
as each biotic element is differently affected by the natural background
and stressors. Even if a stressor is considered as an important variable
for two biotic elements, their responses to stressor levels may be differ-
ent as the subsidy-stress thresholds change (or not) between elements
(Odum et al., 1979).

The high degree of inconsistency that was attained for the results of
the three modelling techniques for all studied biotic elements shows
that, although all the pursued techniques are adequate for the data
and questions at hand, the impact of the choice of the modelling tech-
nique on the results is large. This is even more evident when focusing
on the importance of the year that only ranked high, in terms of impor-
tance, for the LMM approach. The high degree of inconsistency between
modelling techniques demonstrates that anymanagement or conserva-
tion decisions that immerge from distinct modelling technique outputs
may originate dramatically distinct results. This work clearly shows that
such a basin-wide management endeavour, cannot be properly fulfilled
looking to just one or two biotic elements and by conducting analysis
based on a single technique. The approach to basin-wide management
has to be done holistically.

Theway howmodelled stressor effects behave along other gradients
suggest that scale effects must be taken into account when dealing with
stressor gradients and interactions. If in a given basin a certain stressor
only expresses a portion of its full gradient, only that portion should be
considered if the goal is basin management. The scope of the analysis
must be in line with the scale of the task ahead. If not, management
and conservation decisions may be skewed and not fully effective be-
cause they were thought in a way to be effective in portions of the
stressor gradient that are never expressed in that particular river
basin. Some ecological and biological traits have been shown to disen-
tangle the effects of interacting stressors. So, the response variables
elected for analysing multiple stressors should be mechanistically

relevant to the stressors (Townsend and Hildrew, 1994; Poff, 1997;
Statzner and Beche, 2010; Doledec and Statzner, 2008). Additionally,
when looking at several biotic elements with different dispersion abili-
ties, the effect of spatial processes should be considered, although most
often they are not reflected in the large spatial scale at which bioassess-
ments are undertaken (Frimpong et al., 2005; Aroviita et al., 2009;
Heino, 2013; Alahuhta et al., 2013). Even though standard field proto-
cols have been proved to be able to be used across very large areas
(Paulsen et al., 2008), it may be valuable to use concepts such as “ex-
tent” and “risk” (for further details see: Paulsen et al., 2008 and Sickle
and Paulsen, 2008) that present stressor effects as relative magnitudes
or importance across a region.

Because nutrient enrichment stressors and land uses associatedwith
agriculture were shown to have a major overall impact on the target bi-
otic indicators, a big effort should be focused on limiting nutrient loads
into aquatic ecosystems in future river management plans of the case
study basin. Thismay be accomplished for example by increasing the ef-
ficiency of fertilization practices. A future increase of extreme low flow
events are expected in Mediterranean regions according to most global
and regional circulationmodels (IPCC, 2001), with an expected negative
impact on biotic quality of rivers. Agriculture may exacerbate this effect
through water abstraction and therefore an effort centered on the im-
plementation of more effective irrigation schemes is also
recommended.

4.4. Concluding remarks

This work demonstrates the potentialities of coupling process-based
modelling with empirical modelling within a single framework that,
through model projections under hypothetic scenarios, may help deci-
sionmaking at the basin scale. This is accomplishedwithout loss of spa-
tial resolution because predictions of biotic state may be computed for
all river segments in a freshwater system network – while taking into
account the effect of the upstream drainage area to all segments, merg-
ing Allan (2004) and Fausch et al.'s (2002) view on “riverscapes”. Such
an approach facilitates plans of measures to be tested under several cli-
matic and socioeconomic future scenarios, ensuring a cost-effective effi-
cient basket of measures to be deployed depending on future
developments, but also to detect best-practices and measures to in-
crease the system resilience to the perceived future changes – acting
as a prophylactic against forthcoming threats by present stressors. It fur-
ther highlights how stressor interaction is still a difficult problem to
tackle and how not looking at the full gradient of the stressors while
looking at an appropriate responsemight lead to erroneous conclusions
(Branco et al., 2016) and then to disastrous management decisions.
Whereas interacting stressors are extremely important, one should
not focus management solely on dealing with them, as there are often
strong effects rising from isolated stressors. The understanding of the
importance of the stressor is paramount. One should look at the effect
size, either isolated or interacting, and prioritize management actions
according to it.
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APPENDIX 2 - PREDICTING ECOLOGICAL STATUS OF RIVERS AND STREAMS 

UNDER DIFFERENT CLIMATIC AND SOCIOECONOMIC SCENARIOS USING 

BAYESIAN BELIEF NETWORKS 



Predicting the ecological status of rivers and streams 

under different climatic and socioeconomic 

scenarios using Bayesian Belief Networks 

 

The material on which this chapter is based has been previously submitted in Eugenio Molina-

Navarro, Pedro Segurado, Paulo Branco, Carina Almeida, Hans E. Andersen Predicting the ecological 

status of rivers and streams under different climatic and socioeconomic scenarios using Bayesian Belief 

Networks. Limnologica 2019 (submitted) 

 

 

Abstract 

Freshwater systems have increasingly been subjected to a multitude of human pressures and the 

re-establishment of their ecological integrity is currently a major worldwide challenge. Expected 

future climate and socioeconomic changes will most probably further exacerbate such challenges. 

Modelling techniques may provide useful tools to help facing these demands, but their use is still 

limited within ecological quality assessment of water resources due to its technical complexity.  

In this work, we aimed to develop a Bayesian Belief Network (BBN) framework for modelling the 

ecological quality of rivers and streams in two European river basins located in two distinct 

European climatic regions: the Odense Fjord basin (Denmark) and the Sorraia basin (Portugal). 

This method enabled us to integrate different data sources into a single framework to model the 

effect of multiple stressors on several biological indicators of river water quality and, 

subsequently, on their ecological status. The BBN provided a simple interactive user interface with 

which we simulated combined climate and socioeconomic changes scenarios to assess their 

impacts on river ecological status. 

According to the resulting BBNs the scenarios demonstrated small impacts of climate and 

socioeconomic changes on the biological quality elements analysed. This yield a final ecological 

status similar to the baseline in the Odense case, and slightly worse in Sorraia. Since the present 

situation already depicts a high percentage of rivers and streams with moderate or worse 

ecological status in both basins, this means that many of them would not fulfil the Water 

Framework Directive target in the future. Results also showed that macrophytes and fish indices 

were the main responsible for a non-desirable overall ecological status in Odense and Sorraia, 

respectively. The approach followed in this study is novel, since BBN modelling is used for the 

first time for assessing the ecological status of rivers and streams under future scenarios, using an 

ensemble of biological quality elements. An important advantage of this tool is that it may easily 

be updated with new knowledge on the nature of relationships already established in the BBN or 

even by introducing new causal links. By encompassing two case studies of very different 

characteristics, these BBN may be more easily adapted as decision-making tools for water 

management of other river basins. 

 

Keywords: Bayesian Belief Network; Ecological Status; Global change; Rivers; Scenarios; Streams.  



1. Introduction 

Improving the ecological quality of freshwaters is one of the main environmental challenges. In 

Europe, waters are affected by an increasing number of pressures (e.g. water abstraction, 

morphological modifications and diffuse pollution). Climate change may pose an additional threat 

to waterbodies augmenting the effect of pressures (Kristensen, 2012). The European Union (EU) 

has shown a strong determination to address this problem, and several policies such as the 

Nitrates Directive (The Council of the European Communities, 1991) and the Water Framework 

Directive (WFD) (European Parliament and Council, 2000) have been launched to guarantee the 

availability of good quality water. Initially, the WFD committed all EU member states to achieve 

“good” ecological status in all surface waterbodies by 2015. Based on the information reported by 

Member States in the first River Basin Management Plans (reporting was due at the end of 2009), 

Kristensen (2012) demonstrated that 56% of rivers and 44% of lakes in the EU had less than good 

ecological status. Concurrently, Grizzetti et al. (2017) estimated that only 38% the rivers were in a 

good or high ecological status, using data compiled from these plans compiled by the European 

Environment Agency from 2004 to 2009. Additionally, environmental monitoring shows that the 

situation has remained largely unchanged during the last years (Barton et al., 2016). Several 

authors have thus shown that many water bodies failed to achieve a good ecological status due to 

multiple stressors, which compromises the integrity of water resources and ecosystems (Grizzetti 

et al., 2017; Hering et al., 2015; Schinegger et al., 2016). Although some progress has been made, 

agricultural diffuse pollution and hydromorphological pressures are still threats to many 

waterbodies (Grizzetti et al., 2017; Tsakiris, 2015). To better address these problems the EU has 

planned a revision of the WFD by 2019 and postponed the deadline to achieve the ecological status 

targets by 2027 to give more time to implement the revised WFD version (Hering et al., 2015). This 

allows for new measures to be discussed in the current river basin management plan cycle (2016-

2021), which, in addition, has to consider the potential effects of climate change. 

 

Modelling tools have become essential to assist water managers in the context of bioassessment 

programmes (Trolle et al., 2012). Empirical modelling is often applied to describe relationships 

between biotic metrics and stressors with the purpose of finding adequate indicators (Feld et al., 

2016). On the other hand, process-based models are important to predict patterns resulting from 

well-known processes (most often abiotic indicators) (Arnold et al., 1998). Their ability to 

mechanistically describe and incorporate various ecological processes from different disciplines 

and their interdependencies, makes them particularly interesting to simulate multiple stressors 

under different environmental conditions. However, their use is limited within ecological quality 

assessments: i) they require advanced technical skills and large training effort, and thus are not 

always appealing to water managers (Kragt, 2009; Phan et al., 2016); ii) they usually require a large 

data input, especially for calibration, so their application is limited to sites with such data 

availability (Qian and Miltner, 2015); and iii) most process-based models do not include biological 

elements, which are required as biotic status indicators by the WFD (Moe et al., 2016).  

 

The incorporation of expert judgment is limited in the abovementioned modelling approaches 

(Kragt, 2009; Phan et al., 2016). However, it may be useful in some situations, for instance when 



mechanisms are not well known or when data are not sufficient to run empirical models. 

Consequently, in recent years, researchers have been working on developing simple but effective 

modelling approaches to integrate information from different sources (empirical, process-based, 

expert judgment) and nature (quantitative and qualitative). Among them, there has been a rising 

interest in the use of Bayesian Belief Networks (BBNs) as tools for ecological and water resources 

modelling (Barton et al., 2008; Kragt, 2009; Phan et al., 2016). 

 

BBNs, which rely on Bayes’ theorem of probability theory to propagate information, are acyclic 

graphical models representing relationships (links) among variables (nodes) using an underlying 

probabilistic structure in the form of conditional probability tables (CPTs) that link a given variable 

(defined in terms of different states) to one or more variables in the system. More information 

about Bayesian network theory can be found in Kragt (2009). BBNs are able to handle problems 

associated with high levels of uncertainty and complexity due to their data integration capability. 

This helps to overcome data limitations, and makes them useful for management purposes (Kragt, 

2009; McDonald et al., 2015; Phan et al., 2016). Other advantages of BBNs for water quality 

modelling include a relatively simple graphical representation, the explicit incorporation of 

uncertainties, the ability to handle incomplete datasets, and the fact that they can be easily created, 

updated, modified and extended (Barton et al., 2008; Kragt, 2009; McDonald et al., 2015; McDonald 

et al., 2016). Furthermore, when compared to existing process-based models, BBN approaches 

allow to integrate biological elements in ecological status assessment (Moe et al., 2016). 

Nonetheless, BBNs have some caveats: the inability to model feedback loops, the need for 

discretising continuous variables, and their validation (Barton et al., 2008; McDonald et al., 2015; 

Qian and Miltner, 2015). Despite these disadvantages, BBN modelling may prove meaningful to a 

broad range of users within management of water resources due to the ability to integrate science 

and management goals as well as to easily communicate complex information, which might 

facilitate decision-making (Kragt, 2009; McDonald et al., 2015; Phan et al., 2016). 

 

BBN applications for water resources management started in the late 1990s and since then many 

scientific studies involving this approach have been published. However, despite the continuing 

advances in BBNs research and development, their actual use remains limited, used mainly by 

aquatic ecologists and managers for the assessment of river and stream water quality (McDonald 

et al., 2015). In a systematic review discussing BBN applications in water resources management, 

Phan et al. (2016) found 111 peer-reviewed research papers on the topic the majority of which 

(42%) dealing with water quality management. Besides, the authors pointed out a lack of BBN 

studies on international scales and only a few explicitly designed to explore the potential impacts 

of climate change on water quality. Among them, Dyer et al. (2014) aimed to determine the effects 

of climate change and river regulation on water quality; Nojavan et al. (2014) modelled 

eutrophication in an estuary under climatic and nutrient pollution management scenarios; and 

Couture et al. (2018) and Moe et al. (2016) have assessed the combined effect of land use and 

climate changes on lake ecological status. To the best of our knowledge, BBN modelling has not 

yet been used to evaluate the impact of combined climate and socioeconomic scenarios on the 

ecological status of streams and rivers. 

 



Our study aims at developing a BBN framework for stream and river water quality modelling (in 

the following referring to as river), taking as case studies two climatically different river basins 

that share commonalities in the typology of stresses potentially interacting to affect their ecological 

quality: the Odense Fjord basin (Denmark) and the Sorraia basin (Portugal). Climate and 

socioeconomic changes are likely to interact with the stressors present at these basins with 

uncertain consequences (Kristensen, 2012). We believe that a BBN approach will be valuable for 

converting large datasets into a simple and fast prognostic tool for supporting river basin 

managers in decision making processes focused on river ecological status, providing a user-

friendly graphical tool to assess the impact of climate and socioeconomic scenarios on river 

ecological status. 

 

To achieve these goals, we designed a BBN model for both basins based on their characteristics, 

main pressures and previous knowledge, following a Scenarios – Stressors – Indicators – Status 

approach. Different data sources (measured, modelled and expert knowledge) were integrated to 

simulate the effect of multiple stressors on the ecological status of rivers, using several indices to 

provide a complete status assessment. Within the BBN, we integrated several modelling tools 

(process-based and empirical), achieving a more holistic outcome (Phan et al., 2016). Subsequently, 

we simulated climate and socioeconomic scenarios demonstrating their impact on river water 

quality, specifically on its ecological status.  

2. Methods 

2.1 Case-study areas 

2.1.1 Odense Fjord basin 

The Odense Fjord basin is located in the island of Funen (Denmark), with an area of approximately 

1,100 km2 (Fig. 1AFig). The climate is oceanic with an annual mean temperature of 8.7 °C (2000–

2010), with monthly mean temperatures ranging from 1 °C in January and 17 °C in July. Mean 

annual precipitation is 812 mm (2000-2010), with no pronounced seasonality. Agriculture is the 

main land use (68%), followed by urban areas (16%) and forest (10%). The main city in the basin is 

Odense with 187,000 inhabitants. Aquatic ecosystems in the basin include lakes, rivers and 

transitional waters. In spite of several action plans, many of these waters fail to meet the Water 

Framework Directive targets, having 58% of the streams (km) and 82% of the lakes (larger than 5 

ha) a moderate or worse status (Table 1, data for streams have to be seen with caution because for 

most of the streams only one biotic indicator was considered). Water quality in the basin is 

conditioned by urbanization, hydro-morphological modifications (including channelization and 

tile draining in about half of the agricultural area), occasional summer droughts and groundwater 

abstraction drying out headwater streams, and fertilizers and pesticides from agriculture. More 

details on the study area characteristics can be found in Thodsen et al. (2015) and Molina-Navarro 

et al. (2018). 

 



 

2.1.2 Sorraia basin 

The Sorraia basin occupies an area of 7,730 km² in Central Portugal and flows along a length of 155 

km (Fig. 1B). It merges with the river Tagus at the estuary and is the Tagus tributary with the 

largest basin area. The climate is Mediterranean with an average annual air temperature of 15.2 °C 

that ranges from 21.6 °C in the summer to 9.4 °C in the winter. The mean annual precipitation is 

around 600 mm, ranging from 25 mm in summer months to 70 mm in winter months. 

Approximately 41% of the basin area of the Sorraia is forest, 28% range-grasses, 17% agriculture, 

9% pine, 2% orchard, 2% urban and industrial and 1% pasture (Mateus et al., 2009). It includes one 

of the largest area of irrigated crops in Portugal, with a total area of 15,500 ha. The presence of two 

large reservoirs in the basin affects flow patterns and runoff downstream. Additionally, the natural 

flow is substantially reduced by water abstraction for irrigation. The Sorraia watershed has a total 

of 153,000 habitants (INE, 2011) with a density of 20 hab/km2, mainly concentrated in three core 

areas: Ponte de Sôr, Samora Correia and Coruche. It has only minor issues regarding urban 

pollution and urban wastes. Among 122 water bodies (essentially rivers), the ecological status in 

24% of them is moderate or worse (Table 1). The main cause of poor or failing status in the basin is 

the water abstraction for agricultural purposes. On average, 16,500 hectares are irrigated with a 

total water volume of 120·103 m3 per year. Water abstraction for irrigation in the Sorraia basin is the 

highest within the Tagus River basin region (26% of total need). Nutrient loads from agriculture, 

livestock and urban origin, mainly in the alluvial valley, are also important potential causes of 

poor status in the basin.  



 

Fig.1. Location of the (A) Odense Fjord and (B) Sorraia basins and their river networks 

Table 1. Ecological status reported in the Odense Fjord (Miljø- og Fødevareministeriet, 2017) and in the 

Sorraia basins (APA, 2012) (H: High, G: Good, M: Moderate, P: Poor, B: Bad, U: Unclassified). 

 Ecological status (num. and % of water 

bodies) 

 H G M P B U 

Odense basin 

(streams*) 

40 

(7%) 

173 

(29%) 

210 

(35%) 

104 

(17%) 

35 

(6%) 

38 

(8%) 

Odense basin 

(lakes) 

0 

(0%) 

2 

(12%) 

3 

(18%) 

5 

(29%) 

6 

(35%

) 

1  

(6%) 

Sorraia basin 
0 

(0%) 

54 

(44%) 

15 

(12%) 

12 

(10%) 

2  

(2%) 

39 

(32%) 

* Numbers and % refer to km of streams. 

 

2.2 Data sources and pre-processing  

Data used to feed the BBN came from both process-based models and from national biomonitoring 

programmes, collected in the context of the implementation of the Water Framework Directive. To 

simulate stressors related to hydrology and nutrients, process-based catchment models already 

implemented with the Soil and Water Assessment Tool (SWAT; Neitsch et al., 2005) were used (for 

A) 

B) 



further details see Almeida et al., 2018; Molina-Navarro et al., 2017, 2018; Segurado et al. 2018). 

Additionally, SWAT was also employed to simulate stressors under different future climatic and 

socio-economic scenarios.Other stressors in the Sorraia case included land use, which was derived 

from the CORINE landcover database (European Environmental Agency, 2010) as the percentage 

area in the whole upstream catchment; river slope, derived from the CCM2 river network database 

(Vogt et al., 2007); and mean annual temperature, derived from the same climatic models used in 

the scenario settings (see next section). 

Empirical or statistical models (Feld et al., 2016) were used prior to this study to identify and 

quantify the statistical relationships between the stressors and the biotic indicators. Empirical 

models developed for the Odense Fjord case study used data from a national Danish streams 

dataset, which contains measured data from 131 streams (Ferreira et al., 2016). For the Sorraia 

River case study, to encompass a broader environmental gradient, the empirical modelling was 

based on a database for the whole Portuguese Tagus basin comprising 240 records from the Water 

Frame Directive biomonitoring program (Portuguese Environmental Agency, APA), 

corresponding to 141 sampling sites with two sampling occasions for most sites (2010-11) 

(Segurado et al., 2018). Results obtained with both process-based and empirical models assisted in 

the construction of the BBNs, as described in section 2.4. 

 

2.3 Scenarios settings 

In both study cases, scenarios were developed under the socio-economic storylines adopted in the 

MARS Project (www.mars-project.eu). The storylines adopted were the following (Faneca-Sanchez 

et al., 2015): (1) a “Techno World” (TW) that represents a rapid global economic growth, enabling 

technological development but with high energy demands and no real drive to specifically 

enhance or ignore natural ecosystem health; (2) a “Consensus World” (CW) representing a world 

where current policies continue after 2020, economy growing at the same pace as now, with 

awareness for environment preservation; (3) a “Fragmented World” (FW) world represents 

“survival of the fittest” world driven by countries own interests, with fast economic growth in NW 

Europe but decrease in other regions, with minimal or no investment and effort in environmental 

protection, conservation and restoration.  

Storylines were incorporated in SWAT to run the future climatic and socio-economic scenarios. 

First, they were downscaled for each basin by applying expert judgement while taking into 

account their specificities in terms of dominant land use and socio-economic contexts (Table 2). In 

the Odense basin, downscaling was focused on farming, since agriculture is the dominant land use 

(68% of the area). In the Sorraia basin, minor changes in urban areas were also considered. More 

information on the storylines’ downscaling regarding land use and socio-economy and how it was 

applied within the SWAT model can be found in Almeida et al. (2018) and Molina-Navarro et al. 

(2018). Regarding climate, different Representative Concentration Pathways (RCPs) were assigned 

to each storyline: the RCP 8.5 (rising scenario with very high greenhouse gas emissions) was 

assigned to storylines TW and FW, since both consider fast growing economies and fossil-fuelled 

development; and the RCP 4.5 (stabilization emission scenario) was assigned to the storyline CW, 



which considers regulations to save energy in favour of reducing emissions (Faneca-Sanchez et al., 

2015). 

Climate scenarios produced by the ISI-MIP project (www.isi-mip.org) were applied in this study, 

namely the IPSL-CM5A-LR model in the Odense case-study and the GFDL-ESM2M model in the 

Sorraia case-study, considering both the RCP 8.5 and RCP 4.5 emission scenarios. These models 

were selected because they yielded the best median output regarding cumulative precipitation 

relative to observations in each study area (MARS internal document “Choice of the Climatic 

Model for MARS case studies”, unpublished). The future time horizons for scenarios simulations 

were 2030 (interval 2025-2034) and 2060 (2055-2064) (Faneca-Sanchez et al., 2015). Baseline 

scenarios were produced for the period 2011–2020 using the same climatic models to allow a 

comparison among the different time periods. ISI-MIP climate data at a 0.5º resolution was 

downloaded for the grid points closest to each basin and bias-corrected with measured data 

(temperature and precipitation in both study areas, and additionally solar radiation, humidity and 

wind speed in the Odense basin). Then, data was used as input in SWAT to run the scenarios 

previously described (Table 2). More details can be found in Almeida et al. (2018) and Molina-

Navarro et al. (2018). 

Besides the abovementioned future time horizons and baseline period, additional scenarios were 

run with recorded climatic variables for the period 2001-2010 (OBS) to account for the isolated 

effects of land use changes (LUC), including a fourth baseline scenario with present land use 

(PLU). For the Sorraia basin we only considered the changes set for 2060 time horizon. 

 

  



Table 2. Future scenarios considered in the Bayesian Belief Network models and downscaling of storylines 

for the two case studies. For land use, the values correspond to the predicted percentage of the total basin 

area. For the remaining parameters, the percentage change is shown (except temperature in °C change) 

(PLU: Present Land Use, TW: Techno World, CW: Consensus World, FW: Fragmented World, RCP: 

Representative Concentration Pathway, IPSL: IPSL-CM5A-LR climate model, GFDL: GFDL-ESM2M climate 

model). 

Scenarios Baseline 

(PLU) 

TW 

2030 

TW 

2060 

CW 

2030 

CW 

2060 

FW 

2030 

FW 

2060 

a) Both basins 

Emission 

scenarios 

RCP4.5 

RCP8.5 
RCP8.5 RCP8.5 RCP4.5 RCP4.5 RCP8.5 RCP8.5 

Years 2011-2020 
2026-

2035 

2056-

2065 

2026-

2035 

2056-

2065 

2026-

2035 

2056-

2065 

b) Odense Fjord basin 

Climatic Model IPSL IPSL IPSL IPSL IPSL IPSL IPSL 

Precipitation - +5.6% +13.2% +0.6% +1.9% +5.6% +13.2% 

Temperature - +1.0°C +2.7°C +0.8°C +1.6°C +1.0°C +2.7°C 

Animal manure* - -0.2% -0.2% -0.5% -0.5% +15.0% +15.0% 

Artificial 

fertilizer* 
- -3.7% -3.7% -3.5% -3.5% +44.0% +44.0% 

Pig farms 44% 35% 35% 29% 29% 52% 52% 

Cattle farms** 15% 12% 12% 11% 11% 15% 15% 

Mixed farms 15% 11% 11% 9% 9% 15% 15% 

Permanent grass 2% 5% 5% 15% 15% 2% 2% 

Forest 10% 10% 10% 21% 21% 2% 2% 

Willow - 13% 13% - - - - 

c) Sorraia basin 

Climatic Model GFDL GFDL GFDL GFDL GFDL GFDL GFDL 

Precipitation  -39% -42% -37% -43% -39% -42% 

Temperature  +0.8°C +1.0°C -0.9°C +0.3°C +0.8°C +1.0°C 

Fertilization - +10% +15% -10% -15% +30% +35% 

Irrigation - -10% -15% -20% -25% +30% +35% 

Agriculture 33.62% 37.9% 41.4% 29.6% 25.60% 39.9% 41.4% 

Irrigated crops 4.26% 5.1% 5.9% 3.7 % 3.0% 5.1% 5.9% 

Urban areas 0.51% 0.51% 0.52% 0.50% 0.49% 0.51% 0.52% 

*Changes applied in manure and fertilizer application rates for Odense are averages weighted by farm type area. More 

details can be found at Molina-Navarro et al. (2018) 

**Total surface of cattle farms does not change in the FW storyline in Odense, but the surface of cattle farms with low 

fertilization decreases, while the surface of those with high fertilization increases (see Molina-Navarro et al. (2018) for 

further details) 

 

 



2.4 Construction of the Bayesian belief network  

2.4.1 Structure of the model 

The BBN models were based in a multiple stress cause-effect framework, evaluating the impacts of 

land use, agricultural management and climate change on both physical and chemical variables. 

These variables acted in turn as stressors for the biological variables that indicate the ecological 

status of the rivers in the basins, expressed by biotic quality indices following the EU Water 

Framework Directive criteria (WFD - European Parliament and Council, 2000). The BBN models 

comprised five main components, from parent to child nodes: (1) climate change scenarios and 

socio-economic storylines, (2) stressors (modelled data) or proxies (land use), (3) natural 

environmental background (measured data, only for Sorraia basin), (4) biotic indicators (measured 

data) and (5) biotic state (model output) (Fig. 2). The BBN models were designed with the software 

GeNIe, created by BayesFusion and freely available for academic and scientific use 

(bayesfusion.com/genie, BayesFusion LLC, 2019). 

In both case studies, stressors related with the hydrological regime and nutrient loads were 

considered as the most relevant to be included in the BBN model. For the Odense Fjord basin case 

study, four hydrological and two nutrient stressors were included, while for the Sorraia basin case 

study, three hydrological and one nutrient stressors were considered (Table 3, Fig. 2). All 

hydrological and nutrient stressor variables were derived from SWAT simulations for each 

scenario at the sub-basin level. Output variables such as total flow, groundwater flow or nutrient 

concentrations at a daily time-step were extracted from the reach output file (output.rch) and the 

stressors were calculated as described in Table 3. Hydrological stressors were mainly descriptors 

of low or high flow events, although each case study used different metrics because of inherent 

river basin specificities. In the BBN model for the Sorraia basin, given an overall stronger 

environmental gradient in comparison to the Odense Fjord basin, there was the need to consider 

the variability in the data induced by land use, climate and hydromorphology. Therefore, three 

land use variables, temperature and river slope were also included in the BBN model (see section 

2.2 for data sources). Values of these stressors for future scenarios were obtained as described in 

Table 2, except for river slope which does not change in future storylines. Indeed, in the Sorraia 

basin, land use variables were previously shown to have a strong effect on biotic quality, probably 

acting as proxies of several interacting individual stressors (Segurado et al., 2018). In the Odense 

Fjord basin case, total nitrogen concentration was included as an output node even though it was 

not identified as a significant stressor for predicting biotic status in the Odense Fjord basin. Thus, it 

is not linked with the indicators level in the BBN model, but we consider it relevant since it might 

serve as a chemical water quality proxy.  

 

  



Table 3. Variables selected in the Bayesian Belief Network modelling for (a) the Odense Fjord basin and (b) 

the Sorraia basin, and (c) both basins. 

Stressor/variable Description 

a) Odense Fjord basin 

BFI Baseflow index, defined as baseflow volume divided by total volume 

Q90 Flow below the 90th percentile* of the flow-duration curve divided by median 

flow (Q50) 

FRE25 Annual frequency of flow events above the 25th percentile of the flow-duration 

curve** 

DUR3 Annual duration of extreme flow events three times above the flow at Q50 

(days) 

TP Annual mean concentration of total phosphorus (mg/L) 

b) Sorraia basin 

AGRIC % area of agriculture in the upstream basin 

IRRIG % area of irrigated crops in the upstream basin 

URBAN % area of urban areas in the upstream basin 

LFLOWD Mean annual duration of low flow events - periods during which the daily 

mean flow falls below the 10th percentile of the mean annual discharge (days) 

LFLOWN Mean annual frequency of low flow events (number of events) 

FLOWA % of change in flow in relation to the free running river (no barriers) 

SLOPE River slope (%) 

TEMP Mean annual temperature (ºC) 

c) Both basins  

TN Annual mean concentration of total nitrogen (mg/L) 

* 90th percentile = the flow value that is exceeded 90 % of the time, i.e. a low flow indicator. 

** 25th percentile = the flow value that is exceeded 25 % of the time, i.e. a high flow indicator. 

 

Regarding indicators, biotic quality status indices were included and expressed as Ecological 

Quality Ratios (EQR, observed index divided by its value in reference conditions) and then 

translated into ecological status classes (bad, poor, moderate, good or high), following the WFD. 

Each EQR was represented by a node in the BBNs. For Odense Fjord basin, the DFFV for fish 

(Danish Fish Index for Streams; Kristensen et al., 2014), DVPI for macrophytes (Danish Stream 

Plants Index; Larsen and Baattrup-Pedersen 2015), and DVFI for macroinvertebrates (Danish 

Stream Fauna Index; Larsen et al., 2014) were the indices selected; whereas for Sorraia river basin 

the indices were: IPS for phytobenthos (Indice de Polluosensibilité Sécifique; Almeida et al., 2014; 

Cemagref, 1982), IBMR for macrophytes (Macrophyte Biological Index for Rivers; Aguiar et al., 

2014; Haury et al., 2006), IPtI for macroinvertebrates (Rivers Biological Quality Assessment 



Method - Benthic Invertebrates; Feio et al., 2014; Ferreira et al., 2008) and F-IBIP for fish (Fish Index 

of Biotic Integrity for Portugal; INAG and AFN, 2012; Segurado et al., 2014). A final node 

combining the ecological status classes given by the biotic quality indicators, following the “one 

out all out” principle established in the EU Water Framework Directive (Van de Bund and 

Solimini, 2007), closed the network. Using this principle, the final overall ecological status class is 

assigned according to the poorest ecological status class among the different biotic quality 

indicators. The link structure between stressors/land use/environmental background nodes and 

biotic indicator nodes were defined essentially according to the relationships found in the 

corresponding empirical models (Ferreira et al., 2016; Segurado et al., 2018). A node with all 

scenarios used to run SWAT was used as the parent node of each stressor and as the parent node 

for the climatic scenarios node and the storylines node (Fig. 2). 

 



 

Fig. 2. Bayesian Belief Network scheme for the Odense Fjord basin (A) and the Sorraia Basin (B) (EQR: 

Ecological Quality Ratio, for other acronyms please see Table 3). 

 

 

 

 

 

 



2.4.2 Class boundary definition 

Once the structure of the network was designed, the variables represented in network nodes 

needed to be discretized. Three levels, “Low”, “Medium” and “High”, were defined for every 

stressor (Appendix A, Table S1). The absolute boundaries (lower boundary for “Low” and higher 

boundary for “High”) were determined taking into account the whole dataset for each basin. In 

this way, the boundaries represent a whole range of field conditions that can determine the 

subsequent indicator values (conditional probabilities between stressors and indicators are also 

obtained from the national dataset, due to lack of observed data in the Odense basin, as explained 

later). Then, the discretization into three clases was done using the “Uniform counts” tool in 

GeNIe, which creates three classes with the same number of cases each. In the case of the Sorraia 

Basin the class borders were further adjusted towards the inflection points of EQR partial response 

curves derived from the empirical models. The class boundaries of biotic indicators were based on 

the official quality boundaries of the biotic quality indices (Aguiar et al., 2014; Almeida et al., 2014; 

Feio et al., 2014; Kristensen et al., 2014; Larsen et al., 2014; Larsen and Baattrup-Pedersen, 2015; 

Segurado et al., 2014) between the “poor” and “moderate” classes and between this and the 

“good” class. We therefore considered three classes: “Poor/Bad” (PB), “Moderate” (M) and 

“High/Good” (HG). The same classification was adopted for the overall biotic status classification 

in the final node.  

 

2.4.3 Conditional probability tables 

Conditional probability tables (CPT) define the links or dependencies of each child node to parent 

nodes. The CPT linking scenarios to stressors were based directly on the outputs from SWAT 

simulations. The correspondence between each biotic quality indicator (EQR) classes and the 

overall biotic status classes was also deterministic, based on the “one out all out” principle. In the 

Odense case-study conditional probabilities linking stressors with biotic indices were derived from 

the national Danish streams dataset (see 2.2). Denmark as a whole is a lowland country (Windolf et 

al., 2011), hence with a relatively narrow environmental gradient, so the use of a national dataset 

might represent no concern in this sense. For the macrophytes index, two stressor-indicator classes 

combinations had no data available (low DUR3 -Annual duration of extreme flow events three 

times above the flow at Q50- and low Q90 - flow below the 90th percentile* of the flow-duration 

curve divided by median flow (Q50)-; high DUR3 and high Q90). Probabilities of the closest 

neighbour combination were assigned in these cases, following Moe et al. (2016). The ecological 

status classes had a 1:1 correspondence with the indicator classes. In the Sorraia case-study the 

construction of the conditional probability tables linking stressors, land use and environmental 

background to biotic indicators were based on an expert judgement partially informed by the 

effect sizes and partial responses given by empirical models. The parameters were then learned 

with biomonitoring data from the year 2010. All the CPTs are available in Appendix A, Tables S2-

S4. 

 

 



2.4.4 Model validation 

Probability predictions of stressors from scenarios rely on process-based SWAT models that were 

already calibrated and validated (Ferreira et al., 2016; Molina-Navarro et al., 2017; Segurado et al., 

2018). Similarly, the choice of which stressors are influencing each indicator was based on their 

statistically significance within empirical models (Ferreira et al., 2016; Segurado et al., 2018). 

However, these empirical models included more stressors than the BBNs, which are more 

simplistic, so an additional validation of BBN probability results is desirable. Data-driven 

validation was done in both study cases, but different approaches were followed due to different 

availability of independent real data to validate with. 

In the Odense Fjord basin, real data for validation was available from the latest Odense Fjord basin 

management plans, but only as ecological status classes in the rivers, not EQR values. The first 

basin plan only provides ecological status for macroinvertebrates (Miljøministeriet, 2011), while 

the second one provides classes for the three Biotic Quality Elements (BQE; Miljø- og 

Fødevareministeriet, 2016, 2017). The BBN was validated comparing the probability distribution 

for ecological status classes calculated by the BBN for the present land use (PLU) scenario run with 

observed (2001-2010) climate data (PLU_OBS) with the data published in those management plans.  

In the Sorraia basin case study, however, measured data for the year 2011, not used in the BBN 

construction, were available for both stressors and BQE´s and EQRs. Data driven validation was 

performed by using 2011 data to construct new CPTs for the stressors nodes and predict class 

probabilities of the EQR for each BQE and the final biotic quality. These predictions were then 

compared with real EQR classes and resulting biotic quality from the 2011 biomonitoring data. 

 

2.5  BBN modelling 

The BBNs allowed to model the resulting class probability distributions for the overall biotic status 

and for each BQE for each scenario by first setting the corresponding evidence in the scenarios 

node and updating the beliefs. First, the effects of isolated LUC were evaluated comparing the 

present land use scenario (PLU_OBS) with the three storylines (techno world LUC, consensus 

world LUC and fragmented world LUC), all of them ran with observed climate (2001-2010). 

Running these scenarios allows addressing the next step, modelling combined land use and 

climate change scenarios, and guarantees an appropriate discussion of the future storylines results, 

since when analysing combined climate and LUC scenarios, the signals of the first are often 

masked by the effects of the second (Dyer et al., 2014). Then, in both case studies, the effects of 

future storylines were analyzed comparing the probabilities obtained in the scenarios with their 

respective baselines. For both case studies, the response of biotic indicators were modelled for the 

years 2030 and 2060 under different combinations of climate scenarios and storylines, comparing 

the probabilities obtained for each scenario with their respective baselines. Additionally, BBNs 

were kept as simple as possible to present the simplest form (Marcot, 2012; McDonald et al., 2015) 

as a large number of model nodes does not necessarily guarantee a lower uncertainty (Barton et al., 

2008). Marcot et al. (2006) recommend keeping the number of parent nodes to three or fewer to 

limit the size of the CPTs. 



3. Results 

3.1 BBNs Validation 

Figures 3 and 4 show the validation results for Odense and Sorraia cases, respectively. For both 

case studies, BBN predictions tend to underestimate the High/Good class probability and 

overestimate the Poor/Bad in most cases. The exception in both case studies is an underestimation 

of the Poor/Bad class in the case of the fish indices. 

 

 
Fig. 3. Modelled (Bayesian Belief Network, BBN) and observed (BMP, Basin Management Plan) probability 

distribution of biotic status classes (PB: Poor/Bad, M: Moderate, HG: High/Good) in the Odense Fjord basin 

for fish (a), macrophytes (Mphy., b) and macroinvertebrates (Minv., c) indices, and percentage of river length 

without information for the observed data (d) (I.=index). 1 Data from the first Odense Basin Management 

Plan (2010-15, includes data from 2003-10, Miljøministeriet, 2011). 2 Data from the first Odense Basin 

Management Plan updated in 2013 (median from 01-2008, GIS corrected for the SWAT delineated basin; 

Miljø- og Fødevareministeriet, 2017). 3 Data from the second Odense Basin Management Plan (2015-2021, 

includes latest data up to 2012 -2013 for fish-, GIS corrected for the SWAT delineated basin; Miljø- og 

Fødevareministeriet, 2016, 2017). 



 

 

Fig. 4. Probability distribution of biotic status classes (PB: Poor/Bad, M: Moderate, HG: High/Good) 

estimated by the Bayesian Belief Network (BBN) using probability distributions of stressors derived from the 

2011 biomonitoring data vs. observed biotic status classes in 2011 for phytobentos (Phyt., a), macrophytes 

(Mphy., b), macroinvertebrates (Minv., c) and fish (d) indices in the Sorraia basin. 

 

3.2  BBN modelling: Scenario´s simulation results 

Isolated Land Use Change (LUC) scenarios 

The probability distributions of different biotic status across LUC scenarios were very similar in 

both basins, showing very subtle variations (Figs. 5 and 6). In the Odense basin, the macrophyte 

index showed slight differences: the probability of Poor/Bad status decreased in the techno world 

LUC scenario, increasing the probabilities of Moderate and High/Good status. Changes in other 

scenarios, however, were minor (Fig. 5a). For the macroinvertebrate index, probability 

distributions across scenarios were similar (Fig. 5b). Regarding the fish index, the biotic status 

slightly moved towards the extreme classes in techno world LUC (mainly towards High/Good) 

and in consensus world LUC (mainly towards Poor/Bad), while it moved to the moderate status in 

fragmented world LUC (Fig. 5c). Probability distributions for the final ecological status classes 

remained very similar across scenarios (Fig. 5d). 

Regarding stressors, isolated LUC scenarios showed a very noticeable impact on TN (Annual 

mean concentration of total nitrogen (mg/L)) probability distribution. Probabilities of low and, 



especially, medium TN levels increased in techno world LUC and consensus world LUC, 

decreasing drastically the probability of high TN (Appendix A, Figure S1-A). The opposite trend 

was observed in fragmented world LUC, in which high TN probability became 100%.  

 

Fig. 5. Probability distributions (%) of biotic status classes (PB: Poor/Bad, M: Moderate, HG: High/Good) for 

the macrophytes (Mphy., a), macroinvertebrates (Minv., b), and fish (c) indices and of final ecological status 

classes (d) in the different land use change scenarios in the Odense Fjord basin under observed (OBS, 2001-

2010) climate (PLU: Present Land Use, TW: Techno World, CW: Consensus World, FW: Fragmented World). 

 

In the Sorraia basin, except for macrophytes, BBN projections showed an increase of Poor/Bad 

class probability and a decrease of High/Good status classes for the techno world LUC and the 

fragmented world LUC scenarios (Figs. 6a, 6c and 6d). In the case of macrophytes, a very slight 

decrease of Poor/Bad class probability and increase of the High/Good status classes for the techno 

world LUC and the fragmented world LUC scenarios was predicted (Fig. 6b). For all ecological 

quality indices, there was a slight decrease of the Poor/Bad and a slight increase of the High/Good 

status classes for the consensus world LUC scenario. The variation of the final ecologic status 

followed the same overall trend as most indices of each biotic quality element (Fig. 6e). 

Regarding stressor predictions in the Sorraia basin, isolated LUC scenarios showed noticeable 

impacts on Total N and on the mean annual duration and number of extreme low flow events. 

Probabilities slightly shifted towards high class for the techno world LUC and the fragmented 



world LUC scenarios and markedly shifted towards low TN for the consensus world LUC scenario 

(Appendix A, Fig. S1-B). Marked increase of the intermediate probability class and decrease of 

mean annual duration of extreme low flow events were predicted for the techno world LUC and 

the fragmented world LUC scenarios. An increase of the low probability class of mean annual 

number of extreme low flow events was found for the three land use change scenarios, in an 

increasing order from the techno world LUC scenario to the fragmented world scenario (Appendix 

A, Fig. S1-B). 

 

Fig. 6. Probability distributions (%) of biotic status classes (PB: Poor/Bad, M: Moderate, HG: High/Good) for 

the phytobentos (Phyt., a), macrophytes (Mphy., b), macroinvertebrate (Minv., c) and fish (d) indices and of 



final ecological status classes (d) in the different land use change scenarios in the Sorraia basin under 

observed (OBS, 2001-2010) climate (PLU: Present Land Use, TW: Techno World, CW: Consensus World, FW: 

Fragmented World). 

 

3.3 MARS storylines 

Similarly to isolated LUC scenarios, the probability distributions of biotic status classes for the 

different scenarios remained quite stable across MARS storylines for most of the indices in both 

study areas. The most noticeable differences in class probabilities were observed in the 

macrophyte index for the Odense basin and in the fish and overall indices for the Sorraia basin 

(Figs. 7 and 8). 

In the Odense Fjord basin, probability variations in the macrophyte index were especially relevant 

for the 2060 horizon (Fig. 7a). In techno world and fragmented world scenarios, High/Good status 

probability increased, while probabilities of Moderate and Poor/Bad status decreased, and vice-

versa for consensus world (M remained stable). The effects of scenarios observed for the Danish 

macroinvertebrate index probabilities were neglectable (Fig. 7b), while the general trend for the 

fish index in the future storylines was an increase of probability of High/Good status and a 

decrease of Moderate status (Fig. 7c).  

Probabilities of final ecological status classes (Fig. 7d) barely changed for the short term (2030). For 

the 2060 horizon, however, Poor/Bad status probability decreased for techno world and 

fragmented world (-6.1% and -4.3%, respectively), increasing slightly both Moderate and 

High/Good status probabilities. Conversely, for the consensus world scenario, Poor/Bad status 

probability increases (+8.2%), while Moderate probability decreases (-7.4%). Despite these slight 

variations, the BBN predicted that the ecological status of rivers in the Odense Fjord basin would 

remain mostly Poor/Bad in the future (% of Poor/Bad probability varies between 56.7% and 69.2%, 

Fig. 7d).  

As for isolated LUC scenarios, TN was the process-modelling derived stressor showing greater 

variations in its probability distribution after BBN modelling, decreasing high TN probabilities in 

techno world and consensus world and increasing in fragmented world (Fig. S2-A of Appendix A). 

 



 

Fig. 7. Probability distributions (%) of biotic status classes (PB: Poor/Bad, M: Moderate, HG: High/Good) for 

the macrophytes (Mphy., a), macroinvertebrates (Minv., b) and fish (d) indices, and of the final ecological 

status classes (d) for the baselines (PLU_4.5, PLU_8.5) and the future storylines scenarios in the Odense Fjord 

basin (PLU: Present Land Use, TW: Techno World, CW: Consensus World, FW: Fragmented World, 30: 2030 

time horizon, 60: 2060 time horizon, 4.5: Representative Concentration Pathway 4.5, 8.5: Representative 

Concentration Pathway 8.5). 

In the Sorraia basin, the projections under scenarios for the 2030 and 2060 horizons also resulted in 

subtle, although consistent, trends of class probabilities among each BQE and the overall biotic 

status (Fig. 8). For the fish index, Poor/Bad class increased and Moderate and High/Good classes 

decreased in all the storylines. Fragmented world and techno world storylines, however, resulted 

in the highest increase and decrease of, respectively, Poor/Bad and High/Good status probability, 

and this trend was overall slightly more marked in the projection for the 2060 horizon. In the cases 

of phytobenthos and macroinvertebrates indices, a slight increase of High/Good and a decrease in 

Poor/Bad was projected for the consensus world in the future time horizons, in relation to the 

respective baseline (PLU_4.5). On the contrary, for the remaining BQE, an increase of Poor/Bad 

was projected for the consensus world in both future time horizons. 

The class probabilities projections for the final ecologic status showed a clear increase and decrease 

of, respectively, Poor/Bad and Moderate status probability for all storylines. For the 2030 horizon, 

the Poor/Bad status probability increased 20.8% for techno world, 14.8% for consensus world and 

23.3% for fragmented world; the Moderate status probability decreased 18.6% for techno world, 



13.3% for consensus world and 21.0% for fragmented world. For the 2060 horizon, the Poor/Bad 

status probability increased 24.3% for techno world, 14.8% for consensus world and 25.2% for 

fragmented world; the Moderate status probability decreased 21.8% for techno world, 13.4% for 

consensus world and 22.6% for fragmented world. 

Regarding stressors, TN and low flow duration were the most affected, increasing high 

probabilities of both in all the scenarios (Appendix A, Fig. S2-B). 

 

Fig. 8. Probability distributions (%) of biotic status classes (PB: Poor/Bad, M: Moderate, HG: High/Good) for 

the phytobenthos (Phyt., a), macrophytes (Mphy., b), macroinvertebrates (Minv., c) and fish (d) indices, and 

of the final ecological status classes (e) for the baselines (PLU_4.5, PLU_8.5) and the future storylines 

scenarios in the Sorraia basin (PLU: Present Land Use, TW: Techno World, CW: Consensus World, FW: 

Fragmented World, 30: 2030 time horizon, 60: 2060 time horizon, 4.5: Representative Concentration Pathway 

4.5, 8.5: Representative Concentration Pathway 8.5). 



4. DISCUSSION 

4.1  BBNs validation 

For some indices, there were obvious discrepancies between the biotic status classes probabilities 

derived from the BBN and those observed in both basins (Figs. 3 and 4). BBN predictions tend to 

be conservative by underestimating the High/Good class probability and overestimating the 

Poor/Bad status in many cases. In fact, poor validation is a known problem in BBN studies 

(McDonald et al., 2015), as it often incorporates non-testable information, e.g. based on expert 

judgement. The discrepancies found in our study can be partly explained by data limitation: in 

Odense, the availability of observed data for macrophytes and fish from the Basin Management 

Plans was scarce (Fig. 3). In Sorraia, not all the sites in the database have complete data regarding 

EQR values for each BQE index, so the 2011 data for validation represents only a subset of the 

biomonitoring dataset. Some authors have also emphasised the need to validate BBNs with 

independent data, but they also admit that it can be difficult when probability distributions are 

derived from data sources other than observed (Barton et al., 2008; Moe et al., 2016). In general 

terms, the average trend for most indices in both BBNs results and observed data were relatively 

similar. Moreover, CPTs calculations relied on already calibrated/verified models and therefore the 

BBN may already be considered partially validated from the beginning. The use of several BQEs 

also helps to offset problems from a less ideal validation.  

 

4.2  BBN modelling: simulation of scenarios 

4.2.1. Isolated Land Use Change (LUC) scenarios 

The probability distributions of the biotic status classes showed minor variations across scenarios 

for all the indices in both basins, and also for the final ecological status, as a result of the 

combination of the three indices under the “one out, all out” principle (Van de Bund and Solimini, 

2007).  

Thus, isolated LUC scenarios might not affect much the ecological status of rivers in neither the 

Sorraia basin nor the Odense Fjord basin. Similar results were obtained by Barton et al. (2008) 

when using a BBN to evaluate eutrophication mitigation in a Norwegian lake, finding that 

agricultural measures were insufficient to reach a good ecological status. 

 

4.2.2 MARS Storylines 

Probability distributions of biotic status classes exhibited only small variations under MARS 

storylines for most indices in both study sites.  

In the Odense Fjord basin, the probability changes observed for the macrophytes index for the 2060 

time horizon in the Odense basin (Fig. 7a) were not consistent with the projections under LUC only 

scenarios, illustrating the consequence of the different climate inputs (RCP 4.5 in consensus world, 



RCP 8.5 in techno world and fragmented world), and actually a response to the variations in DUR3 

(Appendix A, Figure S2-A). Other studies in the basin also showed that climate changes and 

different climate inputs within scenarios (and not LUC) were the main drivers of stream flow 

(Molina-Navarro et al., 2018), which is directly related to the main stressors affecting the 

macrophytes index in the BBN (Fig. 2). Dyer et al. (2014), using also a BBN approach to study the 

effects of climate change on ecologically-relevant flow regime attributes, also found the duration of 

high (and low) flows to be a relevant stressor for water quality modelling. 

The trend observed for the fish index demonstrates an additional effect of climate over land use 

changes, and might be explained by higher probabilities for the high BFI class in all the scenarios 

(Appendix A, Figure S2-A. Nonetheless, a slight increase of the fish index Poor/Bad status was also 

predicted, balancing the probability distributions so that the average biotic status was not expected 

to change substantially. 

In the Sorraia basin, the major projected variations of biotic status were found in the fish index, 

indicating that climate change might be the main responsible for the overall observed changes. 

However, contrary to the Odense basin, a deterioration of the biotic status, as expressed by a 

decreasing High/Good class and an increasing Poor/Bad class (Fig. 8d), can be expected to occur in 

Sorraia. This deterioration is mainly the result of a temperature increase in all storylines (Appendix 

A, Figure S2-B). Indeed, mean annual temperature was shown to have the strongest negative effect 

on fish biotic status, among a set of stressors of different nature (Segurado et al. 2018). Other 

stressors that may contribute to the projected deterioration of fish biotic status are the yearly mean 

duration of low flow events and TN (Segurado et al. 2018), both predicted to increase in future 

scenarios (Appendix A, Figure S2-B).  

The macrophytes index was found to be responding mainly negatively to the frequency of low 

flow events and TN (Segurado et al. 2018). Nevertheless, the slight deterioration of the biotic status 

predicted by the BBN (Fig. 8b) might be mainly related to the projected marked increase of TN 

(especially in techno world and fragmented world storylines, Appendix A, Figure S2-B), since the 

frequency of low flow events was not predicted to show high variations. 

Projections of phytobenthos and macroinvertebrates indices seem to indicate that future changes 

might be related to LUC and not to climate change. Indeed, empirical models showed a stronger 

effect of land use variables in biotic quality for both phytobenthos and macroinvertebrates, namely 

the percentage of agriculture in the upstream basin, in comparison to hydrological or nutrient 

stressors (Segurado et al. 2018). 

As a result of applying the “one out, all out” principle (Van de Bund and Solimini, 2007), the 

probability of the Poor/Bad ecological status became higher than in the individual indices in all 

scenarios and in both basins (Figs. 7d and 8e). The more pessimistic product of this principle has 

already been reported by other authors using BBNs (e.g. Lehikoinen et al. 2014; Moe et al., 2016). 

Comparing the probabilities obtained for MARS storylines with those obtained with observed 

climate and present land use (Figs. 5 and 6), results suggested that climate change impacts on the 

rivers overall ecological status might be more relevant in the Sorraia basin than in the Odense 

Fjord basin. Mean annual temperature, a stressor only dependent on climate change, was found as 

one of the relevant stressors for predicting the fish index in Sorraia basin, spreading its influence to 



the overall status due to the “one out, all out” principle. However, for all the other indices in both 

basins, both climate and land use changes might not exert a large effect on the ecological status of 

the rivers.  

To the best of our knowledge, this paper uses for the first time an ensemble of BQEs for assessing 

river and stream water quality at an international scale, predicting ecological effects of future 

scenarios (combining both climate and socio-economical changes). Thus, finding similar studies 

using BBNs is challenging. Dyer et al. (2014) also predicted small water quality changes in rivers 

due to climate change in contrast to significant projected hydrological changes. Moe et al. (2016) 

and Couture et al. (2018), assessing lake ecological status through BBNs, also revealed a minor 

influence of climate change on future lake status. However, contrasting with our study, both these 

studies found a significant impact of future land use management scenarios. Different basin 

characteristics and object of study (lake vs. rivers), together with different storyline downscaling 

methods, might explain these differences.  

TN concentration might serve as a chemical water quality proxy. In the Odense case, small 

variations were found, e.g. a larger probability of high TN in the techno world scenario in 2030 

than in the techno world LUC scenario under observed climate (despite same decrease in 

fertilization), or a lower probability of high TN in the fragmented world scenario in 2060 than in 

the fragmented world LUC scenario under observed climate. These changes might result from an 

additional effect of climate change: higher flows favour dilution, but also lead to higher organic N 

load (Molina-Navarro et al., 2018, Couture et al., 2018). Moe et al (2016) also found that the benefits 

of better land use management could be partly counteracted by future warming. 

In the case of Sorraia, a much slighter increase of the higher class probabilities for TN was found 

under the isolated LUC scenarios for techno world and fragmented world storylines under 

observed climate compared with the scenarios that incorporated climate change, despite the use of 

the same fertilization scenarios. All simulated future scenarios showed a significant decrease in 

water flow due to the lower predicted precipitation according to GFDL climate models (Almeida et 

al., 2018), which might explain the higher increase of TN concentration. In the case of the 

consensus world LUC scenario under observed climate, an overall decrease of TN was projected, 

which is in line with the decrease on the use of fertilizers in this storyline. In the equivalent 

scenario that incorporates climate change, the effect of the decrease in precipitation overrode the 

decrease in fertilizer input, resulting in a slight increase of TN. The high solubility and leaching 

susceptibility of nitrate (Ramos et al., 2012) might explain the sensitivity of TN to variations in 

water quantity. 

 

4.3  Consequences for management  

BBN modelling predicted that most water bodies from both catchments would fail to achieve the 

ecological status criteria required in the EU Water Framework Directive (“Good” or “High” 

ecological status, (European Parliament and Council, 2000).  



In the Odense Fjord basin, the changes simulated in the fragmented world storyline would not 

deteriorate the ecological status of the rivers, but those in the consensus world storylines would 

not improve it either. Actually, a small improvement is predicted in techno world and fragmented 

world in 2060, but because of a different climate input (see 4.2.2). Results show that the BQE most 

responsible for a non-desirable overall ecological status is the macrophytes index. Thus, water 

managers in the Odense Fjord basin should place particular emphasis on improving the 

macrophytes’ status in the basin´s streams, thus counteracting the plausible effects of climate 

change on the macrophytes communities. 

In the Sorraia basin, the percentage of rivers not fulfilling the WFD is worse in all the scenarios 

compared to the baseline (Fig. 8e). The main BQE governing the bad overall ecological status is the 

fish component (Fig. 8d). Fish biotic status is predicted to decrease under the three storylines due 

to higher temperatures. Thus, water managers in the Sorraia basin need to put into practice 

measures to counteract the effect of higher temperatures in the fish communities. 

 

4.4  Strengths and weaknesses of the BBN approach  

The main advantage of the use of BBNs is that it allowed to bridge into a single framework 

information of very different nature, including direct data-driven patterns, process-based models, 

empirical models, expert judgement and more arbitrary management rules (e.g. “one out all out” 

WFD rule). Predicted changes are expressed as probabilities, which directly show decision-makers 

the chances of achieving certain outcomes under alternative socio-economic scenarios. 

Despite obvious strengths, BBNs are not without drawbacks. In this study we tried to circumvent 

most of the BBNs known shortcomings (Barton et al., 2008; Borsuk et al., 2004; Borsuk et al., 2012; 

Forio et al., 2015; McDonald et al., 2015; Qian and Miltner 2015). First, the acyclical structure of 

BBNs that, by not allowing feedback effects, restrict relationships to be based on steady-state 

conditions (Borsuk et al., 2004; McCann et al., 2006). Given the objectives proposed in our case-

studies, this does not constitute a problem because we define fixed time windows to which we 

assume fixed socio-economic storylines and climate scenarios that do not have dependencies on 

the outcomes.  

A second issue is the tendency to define over-complex network structures in relation to the scale of 

the management problem (Barton et al., 2008). We made an effort to use network designs as 

parsimonious as possible, by restricting variables to those that could be measured or modelled at 

least at the sub-basin scale, i.e. the portion of basin draining into each of the modelled rivers, 

which are the WFD management units (water bodies). In this way, we also coped with the ongoing 

challenge in aquatic ecology of minimizing model structures to present the simplest form (Marcot, 

2012; McDonald et al., 2015), because a large number of model nodes does not necessarily 

warrantee a lower uncertainty (Barton et al., 2008). Furthermore, to ensure management 

applicability, the BBN models focused on two stressor types - flow and water quality (nutrient 

loads) - which are key targets of river management (Dyer et al., 2014).  



A third issue is related with the sensitivity of BBNs outcomes to discretisation of probability 

distributions (Aguilera et al., 2010; Uusitalo, 2007). To deflect this problem we followed the general 

recommendations to define both the breakpoints and the number of intervals (Uusitalo, 2007), 

taking into account limitations in our data, in particular ensuring that each interval had a 

reasonable amount of observations. For biotic status variables and final biotic status, discretization 

had a management significance since we used the quality boundaries of biotic quality indices that 

are officially used as criteria for management actions, namely the border between moderate and 

good condition.  

 

5. Conclusions 

BBNs have been developed to simulate the ecological status of streams and rivers in two European 

river basins (Odense Fjord and Sorraia) as the result of different climate change scenarios and their 

potential consequent socio-economic storylines (i.e. land use and agricultural management 

changes). The outputs of BBN modelling suggest little changes in the biotic status of rivers in the 

majority of the BQEs analysed. As a result, both in the Odense Fjord and in the Sorraia basin, a 

large percentage of the rivers would not cope with the WFD criteria of good or better ecological 

status, similar to the present situation in Odense, and slightly worse than in Sorraia. In Odense, the 

macrophytes BQE was the main responsible for this and in Sorraia it was the fish BQE; managers 

should allocate their efforts into reducing the effects of stressors into these BQEs respectively for 

each basin. Despite all potential limitations, the BBN projections may represent the best possible 

outcomes taking into account the typical limitations of bioassessment data availability from 

environment agencies and may provide useful qualitative insights to decision-making on water 

management under future climate change. 
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Abstract: Over the past decades, water quality models have become unique tools in the management
of aquatic resources. A consequence of their widespread application is the significant number of
models now available. Available methodologies to compare models provide limited support for
their choice in the first place, especially to end-users or modelers with limited experience. Here we
propose a method to assist in the selection of a particular model from a set of apparently similar
models. The method is termed ScoRE, as it grades models according to three main aspects: Scope
(aim, simulated processes, constituents, etc.), Record (reference to the model in publications, its range
of applications, etc.), and the Experience of using the model from the user perspective (support
material, graphical user interface, etc.). End-users define the criteria to be evaluated and their relative
importance, as well as the conditions for model exclusion. The evaluation of models is still performed
by the modelers, in open discussion with end-users. ScoRE is a complete approach, as it provides
guidance not only to exclude models but also to select the most appropriate model for a particular
situation. An application of this method is provided to illustrate its use in the choice of a model. The
application resulted in the definition of 18 criteria, where 6 of these were defined exclusively by the
end-users. Based on these and the relative importance of each criterion, ScoRE produced a ranking of
models, facilitating model selection. The results illustrate how the contributions from modelers and
end-users are integrated to select a model for a particular task.

Keywords: water-quality modeling; model choice; CE-QUAL-W2; MIKE HYDRO River; MOHID
Water; SIMCAT; SisBaHIA; TOMCAT; QUAL2Kw; WASP7

1. Introduction

The widespread use of water quality models over the past decades has increased the capacity to
manage water quality in both marine and freshwater systems. Water quality models have become
important, if not irreplaceable, tools in management, planning and pollution control for government
agencies, local authorities and many other entities supervising water resources [1–3]. This is evident in
the significant number of water quality models produced over the years [4–6]. Now, the question is no
longer whether to use models in water management but, instead, which models to use. In the current
paradigm, the selection of a model is a determinant step in the study for understanding and managing
a particular aquatic system or water body [7]. However, the selection process can be a challenge,
especially to end-users lacking the modelling, computational or mathematical skills to undertake a
thorough evaluation of the models.
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Given the implications that model results can have in the selection of management practices,
both the model and its selection process must be robust and valid. Transparency and accountability
are critical for robustness and essential for validating the method. This is particularly relevant, as
most likely stakeholders will be involved at later stages of the water management process, whether in
the modelling stages, in the development or evaluation of courses of action, or the implementation
processes, and therefore, stakeholders will need to understand which management options are being
proposed and why. While the literature is prolific in testing and evaluating models [8–14], it is quite
omissive regarding approaches to assist end-users in the choice of models.

In the present paper, we address the model selection stage. Model selection is usually a small part
of the whole decision-making process. Consequently, the same effort put into the entire process of
modelling and water management, concerning time, resources and stakeholder involvement, cannot
be expected to be reflected in model selection. A simple procedure is required, with a compromise
between the degree of participation of stakeholders (and modelers) vs. practicality of this step.
The use of participatory approaches in the context of environmental resources decision making and
modelling shows an increasing trend [15–17]. However, the degree of involvement of end-users and
modelers (technical team) at the model selection stage, i.e., whether end-users should be involved in
the evaluation of the models and to which degree, is still subject of a debate within the literature (e.g.,
Solaranta et al. [18] vs. Boorman et al. [19]).

This paper contains a review of the main approaches found in the literature for water quality
model selection. This review is discussed from a multicriteria decision analysis perspective. Building
on the results from this literature review, we propose an approach for model selection providing more
detailed guidance on how to select a model, producing a more flexible process and promoting the
dialog between end-users and technical teams. The proposed approach applies only to model selection,
and it excludes the socioeconomic and institutional spheres of water management.

Throughout this paper, we refer to the terms model end-user and modelers. By model end-user,
we refer to those that will use the model results, such as water managers and other stakeholders. By
modeler, technical team or expert, we mean the person who has the knowledge to understand the
processes behind the model and knows the modelling approaches.

2. Procedures for Selecting Water Quality Models

One of the earliest guidelines to select water quality models for lakes, rivers or estuaries dates
back to a 1976 guidebook developed for governmental use by the US Environmental Protection Agency
(EPA) [20]. The volume described a selection process with four levels of criteria. The first two phases
allow the elimination of models and the latter two stages rank the remaining models. In brief, the
phases are:

• Phase I: eliminatory phase, based on: appropriateness of the model to the problem at hand (type
of water body, time variability, discretization, constituents modelled, model input data, driving
forces and boundary factors);

• Phase II: eliminatory phase, based on: cost (model acquisition requirements, equipment
requirements, data acquisition costs, machine costs, manpower costs);

• Phase III: ranking models, based on: weights attributed to the criteria from phases I and II;
• Phase IV: further ranking of models based on: relevant processes included, accuracy (model

representation, numerical stability, dispersion), sufficiency of available documentation, output
form and content, data deck design, ease of modification.

Only in the last 15 years have new complete frameworks for water quality model selection
started to appear, guiding the whole process of model selection, including the definition of which
characteristics of the models are being compared (i.e., defining the criteria of comparison) and how to
compare these [18,19,21,22]. Some approaches [18] identify a set of questions to guide the definition of
criteria to be used as a means of comparison between models. Some examples are “How well does
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the model’s output relate to the management task”, “How well is the model suited for sensitivity
and uncertainty analyses and how well have these analyses been performed and documented?” or
“How are the model’s user manual and tutorial?” In another study [19], authors defined the evaluation
criteria itself for model selection, along with some guiding questions for the water manager to help to
determine further criteria to be used for model comparison. In this particular study, modelers then
evaluated the different models under those criteria. In a more recent protocol for model selection [21],
the main aim was to provide a framework to assist inexperienced model users, as well as to provide
an auditable process. Although not explicitly identified, this protocol is based on a Multi-Criteria
Decision Analysis (MCDA) process. The main distinction of this protocol with the previous work
referred to Boorman et al. [19] is that this latter work does not require the involvement of modelers in
evaluating the models, just end-users. While modelers make the questions that guide the protocol, it is
up to end-users to evaluate criteria through a literature review.

In our review of the literature, we considered the following concepts: (i) criteria: the attributes
used to compare the different models; (ii) valuation or scoring: stage in which all models are compared
under each criterion, resulting in a model rank for each criterion; (iii) aggregation procedure: process
of aggregating the results from the different criteria (i.e., converting all ranks to the same scale in order
to be compared), usually by attributing weights to the criteria, which represent the “conversion factors”
between them.

2.1. Valuation of Models

There is intense debate in the literature about which stages model users should be involved in. A
particular point of disagreement relates to the valuation of models or scoring, a term used in MCDA to
refer to the evaluation of the models in each criterion. Some authors [18,20–22] claim that the scoring
(and the whole model selection process, including choice of criteria and which models to evaluate)
should be carried out exclusively by end-users, for transparency reasons and to reduce time and costs
of the model selection stage. Chinyama et al. [21], for instance, suggested that model users can score
the models on the criteria based on a literature review on the models. Interestingly, in the case study
proposed here, authors (modelers), not the end-users, score the criteria. However, no test has been
made to evaluate if end-users can access the literature and understand it to be able to score all criteria
regarding the models or have the time for such a process. Grimsrud et al. [20], on the other hand,
considered that external consultants might be used and, in this case, give planners (end-users) the
tools to know what to ask for and what to expect.

Other authors (e.g., Boorman et al. [19]) claimed that end-users might not process all the
knowledge necessary to adequately evaluate the models under the criteria defined and, therefore,
argued that modelers should conduct the process of assessing models within each criterion. In this
particular case ([16]), although the valuation of models is left to the modelers, criteria are still defined
by end-users.

It is the opinion of the authors of the present work that knowledge of end-users is essential to
score the criteria, but some criteria might require knowledge that some end-users may lack.

2.2. Aggregation Procedures

The aggregation procedure corresponds to the phase where the scores of each model in all
criteria are aggregated together to obtain a final value per model. The final result is a ranking of the
models. The way the scores from models in each criterion are “converted” into a standard unit to be
aggregated can vary. Within the literature on water quality model selection, there is a fair degree of
similarity between the process of aggregating values from different criteria. Most methods consider
eliminatory criteria, setting a minimum base level so that, if not satisfied, the model is excluded from
the process [18–22]. No additional guidance is provided to select one model out of the remaining
adequate models (Figure 1). With no further guidance, end-users end up with a reduced list of models
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to choose from. An additional process is required to assist end users to identify which of the remaining
models should be selected. Very few studies provide guidance on this [20,22].
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The EPA Model Selection Process [20] considers eliminatory criteria (corresponding to Phases I
and II from the process). However, they also present weighted criteria (corresponding to Phases III
and IV from the process) where (ranges of) weights for the criteria are suggested by the authors for
the remaining (not eliminated) models. The aggregation procedure used in this guidance manual is a
linear additive process. In Tuo et al. [22], on the other hand, there are some eliminatory criteria, linked
with the modelling objective but also to other features such as model complexity. For non-eliminatory
criteria, the criteria are assumed to have equal weights, although authors recognize that different
weights could be provided to the criteria if the method is compatible with that situation.

The use of eliminatory criteria, as mentioned before, makes the methods non-compensatory or
partially compensatory. Compensatory methods are methods where weights are seen as trade-offs, i.e.,
where a model is selected by being good when judged against one criterion, even if it performs low
against another criterion. Non-compensatory methods attribute weights or importance coefficients to
criteria, expressing the relative importance of each criterion [23,24].

3. The ScoRE Method

ScoRE is a multicriteria-based method for water quality model selection, applying only to model
selection, and excluding the socioeconomic and institutional spheres of water management. The
main features of the method are that it provides detailed guidance on how to select a model, it is a
more flexible process and promotes the dialog between end-users and technical teams. The method is
grounded on a set of three broad clusters (as in Parsons et al. [25]), through which end-users and a
technical team define a set of criteria for model evaluation and selection. Water quality models are
then evaluated on each criterion by the technical team, which will then discuss the weights for the
clusters with end-users. Weights are applied to the clusters to provide a final ranking of the water
quality models. ScoRE engages model end-users by involving them in the definition of the criteria,
in the selection of models to be evaluated, and in the weighing of the clusters. End-users have the
opportunity to go through the whole process and debate the final results with the technical team.
Figure 2 provides an overview of ScoRE, and the next sections provide a more detailed description of
the process.
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3.1. Definition of the Evaluation Criteria

In ScoRE, criteria are defined by the technical team in dialog with end users. The scientific
consistency of the criteria choice, a criterion identified as relevant by Loucks and Beek [26], is ensured
by the technical team. Model end-users ensure that additional aspects are not left out of the analysis,
either related to the particularities of the context being modelled, data availability or any sort of
constraints from the user side (e.g., available funds or level of familiarity with modelling techniques).
This procedure warrants results to better satisfy the needs of end-users.

The criteria are grouped in three clusters, defined a priori. These are “model Scope”, its
“publication/dissemination Record” and the “overall Experience to users”, hence its designation:
ScoRE (Scope—Record—Experience). Together, the three clusters aim at assessing the models for a
variety of parameters, thus providing an overall evaluation. The cluster Scope addresses the nature of
the model (stochastic, deterministic, process-oriented, etc.), its complexity and the range of constituents
and processes the model simulates. The cluster Record provides a proxy for the dissemination and
acceptance of the model amongst modelers, by quantifying the number of technical publications where
a particular model features. The cluster Experience defines the experience of using the model, and
how it can be defined as straightforward or difficult, based on the interface and material available to
help the model user. A more detailed description of each cluster is offered in the next sections.

3.1.1. Model Scope

Considering that a model is a (simplified) representation of reality, the scope of a model is
the purpose for which it was built in the first place. Water quality models, for instance, may be
developed to simulate fresh-water systems, brackish environments or marine and coastal waters,
focusing on pollutants, ecological processes, water chemistry, etc. Thus, the scope of a model defines
its nature, methods, parameterization, processes simulated, and all other components that expresses its
validity to simulate any particular system. These include the type of approach (conceptual, empirical,
physically based), the nature of the model (deterministic or stochastic), the state (steady-state or
dynamic simulations), and its spatial analysis (distributed, lumped), data requirements, dimensions
(1D, 2D or 3D), and robustness, among other aspects [3,7].

3.1.2. Publication Record

Publication record is defined in ScoRE as the number of publications in science and engineering
journals featuring a particular model. This can be seen as an alternative for the impact of a model, based
on the assumption that a widely cited model implies wide acceptance by the scientific community and,
consequently, a proxy to its consistency, validity and robustness.

Some examples of criteria within this cluster can be the number of papers featuring the name
of the model in the title or in relevant fields such as the summary and keywords, or simply the
number of times a given model is mentioned in the text body. The information for this indicator can be
retrieved from web services such as ScienceDirect or Web of Knowledge. Also, the type of systems for
which the model has been applied to, or its worldwide dissemination, can also be used to assess the
model Record.

3.1.3. User Experience

Interface

The experience of using a particular model is strongly conditioned by the graphical user interface
(GUI). The GUI aims to facilitate the input of data, running of the model and output visualization, and
should provide a user-friendly environment, with graphical elements that allow the user to interact
with the software. Most models come with a native GUI but some occasionally have alternative options
created by third parties, frequently with additional features such as advanced pre- and post-processing
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tools, extra visualization options, etc. These alternative GUIs usually require payment for the software
or a licensing fee of some kind.

Support Material

Support material is a basic requirement for any model and must be available either online or on
paper. Numerical models, like any other software, should have a set of supporting documents
containing information on the model structure, description of simulated processes, a list of the
parameters, and additional relevant information on its functioning. Commercial models frequently
have comprehensive guides while academic software and freeware usually rely on more concise
manuals. Thus, user guides vary significantly in detail and quality among models and this difference
can weigh on the choice of a model. The model can also have a published detailed model calibration,
validation, and parameter assessment.

Technical Support

Technical support is a common service provided by commercial software developing companies,
to help users overcome any difficulties or problems they may face when using a product. Since it
requires having the staff to interact with the client (by phone, Skype, email, etc.), technical support is
frequently a paid service or a service that is offered as part of a paid software package. Alternative
ways to provide technical support to users may be less expensive or even cost-free, such as online
forums, in which users and developers post technical questions and answers.

Cost

Numerical models, like any other software, are available to the user in many different ways, some
of which may require payment of a licensing fee, implying that some models have a cost associated
with their use and exploration. The implication of a payment can pose problems to some users,
frequently depending on the price, so this criterion can have a significant influence on the selection.

3.2. Defining “Eliminatory Criteria”

“Eliminatory criteria” set the conditions that models need to satisfy in order to proceed to the next
stage in the evaluation process. For example, type of water body could be an eliminatory criterion,
defining that if a model does not apply to lakes, for example, the model would be excluded. Another
example could be whether the model presents a vertical thermal structure of reservoirs, if essential
for a particular case, and where models could be excluded from the analysis if they were not able to
present such vertical thermal structure.

3.3. Valuation of Criteria

The first step in the valuation of criteria stage is to evaluate all models in the “eliminatory criteria”
in order to weed out some of the models. The valuation of criteria is conducted by the technical team
(and later discussed with the end-users). After the valuation according to the eliminatory criteria, the
remaining models are evaluated in the criteria. All remaining models are compared in each criterion
and ranked in a scale from 1 to n (n being the number of models), where 1 is the worst-performing
model and n the best-performing model. If models are assumed to be equal for a particular criterion,
then the same value can be assigned to both. This process is repeated for each criterion. The result is a
rank of models in each criterion (i.e., if the number of criteria defined is nt, then there will be nt ranks).
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3.4. The Aggregation Procedure of ScoRE

The aggregation procedure of ScoRE makes use of weights. First, criteria scores within each
cluster are averaged:

S =

(
nt
∑

i=1
Si

)
× ntS

−1,

R =

(
nt
∑

i=1
Ri

)
× ntR

−1,

E =

(
nt
∑

i=1
Ei

)
× ntE

−1,

(1)

where S, R and E are the average scores for each cluster, Si, Ri and Ei are the scores of the criteria within
each cluster, and ntx is the total number of criteria per cluster. This means that the scores of criteria
within the same cluster are seen as equally relevant. ScoRE values can range from 1 to n and so the
result from Equation (1) will allow models to be ranked from the less suitable (lower ScoRE) to the
more adequate (higher ScoRE), in each of the criteria.

Weights defined by end-users are attributed to each cluster. The aggregation procedure follows a
linear additive model to provide a final ranking of models. This is expressed by (2):

ScoRE = (WS × S) + (WR × R) + (WE × E), (2)

where WS, WR and WE are the relative weights of each cluster, provided that WS + WR + WE = 1.
A summary of the main characteristics of ScoRE and its comparison with other studies is presented

in Table 1.

Table 1. ScoRE compared to other approaches.

Approaches Criteria Definition Who Conducts the Valuation
of Models in Each Criterion Aggregation Procedures

Saloranta et al. [18] Predefined questions to guide
criteria definition End-users Eliminatory criteria

Boorman et al. [19] Predefined questions to guide
criteria definition Modelers Eliminatory criteria

Grimsrud et al. [20] Predefined End-users with possibility of
hiring modelers

Eliminatory criteria and
detailed guidance for how to

proceed for the non-eliminated
models (weighting process)

Chinyama et al. [21] Predefined questions to guide
criteria definition End-users Eliminatory criteria

Tuo et al. [22] Predefined End-users
Eliminatory criteria. Some

insights into how to proceed for
non-excluded models

ScoRE No pre-definitions. Criteria defined
between modelers and end-users

Modelers. Results discussed
with end-users

Eliminatory criteria. Detailed
guidance for how to proceed

for the non-eliminated models
(weighting process)

4. Using ScoRE in a Real Case

4.1. Study Sites

The Ceará State in the northeast region of Brazil is characterized by semi-arid meteorological
conditions, frequently leading to water scarcity. As such, a sound management of water resources is
critical, requiring decisions from managers and regulators that balance water availability and quality
for human and animal consumption. Most available water is stored in reservoirs scattered across the
state, the majority of which are under significant pressures originating in the watershed, ranging from
intense cultivation to human and industrial effluent discharge. Fundação Cearense de Meteorologia e
Recursos Hídricos—FUNCEME (Ceará’s Meteorological and Hydric Resources Foundation)—is the
federal organization responsible for managing the water resources in the state, along with Companhia
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de Gestão dos Recursos Hídricos—COGERH (Water Resources Management Company). Over the past
few years, FUNCEME and COGERH have explored new water management strategies, some of which
require the use of numerical models. Both organizations were engaged in the choice of a water quality
model to study three reservoirs located in the Ceará State, in the northeast region of Brazil: Acarape
do Meio, Araras and Olho d’Água. The location of the reservoirs is depicted in Figure 3.
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These reservoirs differ in their characteristics, physical setting and pressures originated in the
basin. They share, however, some basic features, such as a relatively low mean depth, high water
temperatures all year around, the presence of a mild thermocline frequently disrupted by episodes of
intense wind-induced mixing, strong vertical chemical stratification, and persistent oxygen-depleted
bottom layers.

4.2. Application of ScoRE

The technical staff from FUNCEME and COGERH were the end-users and the modelers consisted
of the authors of this paper. Modelers had a background in environmental modeling, ecology of
aquatic environments and water quality. The application of ScoRE followed the process described in
Section 3, schematized in Figure 2. The process is summarized below:

1. End-users were provided with a list of models identified by modelers. This list was defined
by modelers taking into account existing validated models. The list was discussed with the
end-users, who were given the possibility of including additional models if they had any they
wanted to see included.

2. The criteria were defined by modelers, based on the conditions of the case study at hand. These
criteria were defined taking into account three clusters of ScoRE. The list was discussed with
the end-users, who added additional criteria to the list. End-users, together with the modelers,
reviewed the criteria to select which of these should be eliminatory criteria.

3. Each model was evaluated within the eliminatory criteria first. This allowed the exclusion of
some of the models. The remaining models were then evaluated in each of the criteria. The
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valuation process was conducted by modelers. The result was a rank of the models for each
criterion. The resulting scores were discussed with the end-users.

4. End-users attributed weights to the clusters of criteria. With the weights, it was then possible
for modelers to average scores in each cluster (using Equation (1)) and apply the linear additive
model (Equation (2)) to obtain the final rank of the models.

5. Final rankings were then discussed with end-users and, when necessary, final adjustments were
made to the criteria, scores or weights in accordance.

The process was conducted over two meetings between end users and modelers. The first meeting
included steps 1 and 2 and the second meeting included steps 4 and 5. Step three was conducted by
the modelers alone and results were taken for discussion in the second meeting.

5. Results

5.1. Models Included in the Evaluation

Eight water quality models were selected by the technical team and reviewed by the end-users.
These models were: CE-QUAL-W2, MIKE HYDRO River, MOHID Water, SIMCAT, SisBaHIA,
TOMCAT, QUAL2Kw e WASP7 (Table 2). The models are process-based (or process-oriented),
have been used worldwide to some extent, and encompass a wide range of complexity, both in
parameterization and number of simulated processes. They are briefly described in their basic
principles, simulation elements, limitations and intended use. While some have been used extensively
in the past, others are less disseminated. A summary of their main features is presented in Table 3 and
detailed descriptions can be found in the references provided.

Table 2. Models evaluated.

Model Origin and model website

CE-QUAL-W2 US Army Corps of Engineers/Portland State University, Portland, USA
http://www.ce.pdx.edu/w2/

MIKE HYDRO River Danish Hydraulic Institute, Hørsholm, Denmark
http://www.mikepoweredbydhi.com/products/mike-hydro-river

MOHID Water Instituto Superior Técnico, Lisbon, Portugal http://www.mohid.com

QUAL2KW Washington State Department of Ecology, Olympia, WA, USA
http://www.ecy.wa.gov/programs/eap/models.html

SIMCAT Environment Agency, Rotherham, UK

SisBaHIA Fundação COPPETEC - COPPE/UFRJ, Rio de Janeiro, Brazil
http://www.sisbahia.coppe.ufrj.br/

TOMCAT Environment Agency, Rotherham , UK

WASP7 The United States Environmental Protection Agency, Washington, DC, USA
http://www.epa.gov/athens/wwqtsc/html/wasp.html

5.1.1. CE-QUAL-W2

CE-QUAL-W2 (Table 2) is a public domain model that has been widely used in the study of
stratified water systems, including lakes, reservoirs and estuarine environments [27–32]. CE-QUAL-W2
is a two-dimensional (longitudinal-vertical) hydrodynamic and water quality model. The model was
originally developed by the U.S. Army Corps of Engineers [33,34], and a comprehensive description
of CE-QUAL-W2 can be found in Cole and Wells [35]. The model is based on a finite-difference
approximation to the laterally averaged equations of fluid motion and quantifies free surface elevation,
pressure, density, vertical and horizontal velocities, and constituent concentration and transport.
Explicit numerical schemes are employed to compute velocities, controlling the transport of energy and
biochemical constituents. CE-QUAL-W2 simulations are rather fast and require low computational

http://www.ce.pdx.edu/w2/
http://www.mikepoweredbydhi.com/products/mike-hydro-river
http://www.mohid.com
http://www.ecy.wa.gov/programs/eap/models.html
http://www.sisbahia.coppe.ufrj.br/
http://www.epa.gov/athens/wwqtsc/html/wasp.html
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power, but need a significant amount of data. Also, the high number of parameters makes the
calibration tasks difficult. Nonetheless, this model has been optimized for water quality in reservoirs
and is one of the most used models in the study and management of these aquatic systems [36–41].

5.1.2. MIKE HYDRO River

The MIKE HYDRO River model (Table 2) is a one-dimensional modeling tool developed by the
Danish Hydraulic Institute (DHI), for the detailed design, management and operation of river and
channel systems with different levels of complexity [42]. This model has been widely used in the
modeling of rivers and lakes [43,44]. The model is composed of several modules that can be either
used together or as stand-alone simulators, including rain fall, hydrodynamic, advection-dispersion,
sediment and water quality. The hydrodynamic module is one-dimensional and computes unsteady
flow, discharge and water level based on Saint–Venant equations. This model has been optimized
for operational modeling in flood forecasting, ecological assessment of water quality in rivers and
wetlands, sediment transport and river morphodynamics. However, the MIKE HYDRO River model
requires a large amount of data and a proper simulation of some constituents can be difficult to achieve
if data are lacking [4]. The model is also highly dependent on bathymetric accuracy.

5.1.3. MOHID Water

MOHID Water (MOHIDw henceforth) is an open-source water modeling system (Table 2)
designed for the effective simulation of 3D baroclinic circulation across river-to-ocean scales,
using a finite volume approach that solves the primitive continuity and momentum equations for
the surface elevation and 3D velocity field for incompressible flows. Temporal discretization is
performed by a semi-implicit (ADI) algorithm with two time levels per iteration. MOHID Water
couples the hydrodynamic model with two water quality/biogeochemical models with different
levels of complexity: a simpler NPZ (nutrient-phytoplankton-zooplankton) model using the EPA
formulation [45] and a complex multi-elements model for marine ecological processes [46]. The model
was originally developed for marine systems but its modular code configuration allows its use in a
variety of spatial and temporal scales to study processes occurring in reservoirs [47], estuaries and
coastal lagoons [48–53], up to regional scales [54]. More recently the MOHID Land model has been
developed for watershed and groundwater processes [55,56], aiming at a future full modeling of the
land-to-ocean water continuum [57].

5.1.4. QUAL2KW

QUAL2Kw (Table 2) is the recent development of models in the QUAL 2 series [58–60], released
by the EPA. QUAL2Kw is a 1D steady-state model for rivers, tributaries and well-mixed lakes. Unlike
the previous versions, QUAL2Kw allows for unequal river reaches, and multiple water inputs and
abstractions in each segment. The model solves both the advective and dispersion modes of transport
in the mass balance of constituents. The model allows the simulation of several parameters: dissolved
oxygen (DO), biochemical oxygen demand (BOD), temperature, pH, conductivity, suspended solids,
alkalinity, total inorganic carbon, organic nitrogen, ammonia, nitrite, nitrate, organic phosphorus,
inorganic phosphorus, algae (chlorophyll a), coliform bacteria, one arbitrary non-conservative
constituent solute, and three conservative constituent solutes. QUAL2Kw is a well-documented
freeware model and is specially designed for a system where macrophytes play an important role. It
has been used to simulate lotic systems [61–63].
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Table 3. Summary of the main characteristics of the selected water quality models (adapted from [7,61]).

Features CE-QUAL-W2 MIKE HYDRO River MOHID Water QUAL2KW SIMCAT SisBaHIA TOMCAT WASP7

Dimensions/Types 2D, dynamic 1D, dynamic 3D, dynamic 1D, steady-flow
1D, steady-state
(time-invariant),

stochastic
3D, dynamic 1D, steady-state

(time-invariant) 3D, dynamic

Modeling approach ADE, unequal river
reaches, river branches

ADE, unequal river
reaches,

Regular grid, finite
elements

ADE, unequal river
reaches, CSTR Non-structured grid,

finite differences CSTR ADE, dynamic
compartmental

Element cycles O, C, N, P, Si, Fe O, N, P O, N, P O, C, N, P O, N O, N, P O, N O, N, P, Si

Constituents/processes

Temperature, pH, N (ON,
NO2, NO3, NH3), P (OP,
PO4), DO, CBOD, TIC,

alkalinity, phytoplankton
(4 groups), bottom-algae,

SOD, detritus

User defined (ECO Lab
module)

Temperature, N
(ON, NO2, NO3,

NH3), P (OP, PO4),
DO, phytoplankton,

detritus

Temperature, pH, N
(ON, NO2, NO3,

NH3), P (OP, PO4),
DO, CBOD, TIC,

alkalinity,
phytoplankton,

bottom-algae, SOD,
detritus

DO, CBOD,
ammonia, user

defined conservative
parameter

Temperature, pH, N
(ON, NO2, NO3,

NH3), P (OP, PO4),
DO, phytoplankton,

detritus

DO, CBOD,
ammonia, chloride,

user defined
parameter

Temperature, pH, N
(ON, NO2, NO3,

NH3), P (OP, PO4),
DO, CBOD, TIC,

alkalinity, salinity,
phytoplankton,

bottom-algae, SOD,
detritus, OCHEM

Open Yes No Yes Yes - No - Yes

Strength

Optimized for reservoir
modeling; detailed
parameterization of
sediment diagenesis

Extensive support
material

Full hydrodynamic
simulation Auto-calibration

Simulations
requiring low

computational time
with limited data,
auto-calibration

Grid adaptation to
complex domain

geometries

Simulations
requiring low

computational time
with limited data,
auto-calibration

Organic and heavy
metal pollution

Weakness Requires extensive data Requires extensive data Computational
demand

Does not simulates
branches Over-simplistic Limited number of

users Over-simplistic Requires extensive
data

Note: ADE: advection dispersion equation, CSTR: continually stirred tank reactor in series, DO: dissolved oxygen, CBOD: carbonaceous biochemical oxygen demand, OCHEM: organic
chemicals, ON: organic nitrogen, OP: organic phosphorus, SOD: sediment oxygen demand, TIC: total inorganic carbon.
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5.1.5. SIMCAT

SIMCAT (Simulation of Catchments, Table 2), originally developed by the Anglian Water Group,
UK, is a one-dimensional, time-invariant (steady-state) model to simulate the fate and transport of
solutes in a river [6,64]. SIMCAT is a stochastic model relying on Monte Carlo analysis techniques.
The model includes the inputs from point-source effluent discharges including DO, non-conservative
substances such as BOD with a decay rate, and conservative substances which are assumed not to
decay. The model splits the river into user defined reaches, and in each run, the model randomly
selects values for quality and flow from the given distributions for all the inputs. This model excludes
processes such as photosynthesis and oxygen consumption in the sediments, thus becoming limited to
model the reservoir dynamics. However, it is suited for modeling constituents in freshwater that do
not rely on sediment interactions. SIMCAT is easy to use, allows fast runs and requires a relatively
small amount of data to operate. The model can easily be applied at the basin scale and used as an
evaluation and management tool by trained technicians [65].

5.1.6. SisBaHIA

SisBaHIA® (Sistema Base de Hidrodinâmica Ambiental) (Table 2) was originally developed to
simulate coastal and in-land water bodies [66,67], and is composed of a 3D hydrodynamic model
coupled to a water quality model. The advection–diffusion equation is solved individually for
each constituent, taking into consideration the advective and diffusion terms, together with the
transformation terms [68]. The model relies on finite elements and the finite difference approach in the
spatial and time discretization, respectively. Turbulent stress is parameterized according to filtering
techniques derived from the approaches known as large eddy simulation. The water quality model uses
the same basic transformation equations presented in the WASP (Water Quality Analysis Simulation
Program) model, and also uses the same spatial grid as the hydrodynamics model. SisBaHIA can
have non-restricted used for non-profit applications such as research purposes. However, its use in
a commercial activity (e.g., for consultancy purposes) can only be done under the payment of a fee
defined by direct agreement with COPPE/UFRJ.

5.1.7. TOMCAT

The TOMCAT (Temporal Overall Model for Catchments) (Table 2) model was advanced in the
1980s by Thames Water, a UK water utility company, to assist in studying and improving effluent
quality at all Thames water sites [69,70]. While TOMCAT follows a similar approach to SIMCAT, by
assuming a continuous stirred-tank reactor (CSTR) method and Monte Carlo stochastics, it differs by
allowing more complex temporal correlations. The model allows for setting the number of parameters
by river segment, as well as the length, mean area, cross-section, and depth for each river reach.
Equations relating the processes that control the concentration of solutes are identical to SIMCAT,
except for temperature and DO. The simpler approach of TOMCAT requires a rather limited amount
of data when compared to other models. However, its simpler approach also comes with some
limitations, like the number of simulated processes, some of which are relevant for aquatic systems,
such as photosynthesis, respiration, and sediment dynamics.

5.1.8. WASP7

The WASP model (Water Quality Analysis Simulation Program) (Table 2) is a freeware model
developed by the EPA for surface water quality processes [71]. WASP7 can be coupled to hydrodynamic
and sediment transport models that provide flow, depths, current velocities, temperature, salinity and
sediment fluxes. As such, the WASP7 model can become a full 3D dynamic model, but linking the
model to multi-dimensional hydrodynamic models is not a straightforward task. The model relies on
the finite difference method to calculate the temporal and spatial evolution of these constituents in each
segment of the computational geometry. WASP models have been applied to address several water
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quality problems in a variety of aquatic systems, such as ponds, lakes, rivers, reservoirs, estuaries
and coastal waters [72–74]. WASP7 addresses processes that take place both in the water columns
and sediment and is particularly useful to simulate organic chemicals. However, the model does not
simulate mixing zones and near-field effects and does not handle the sinking and flotation behavior of
some constituents.

5.2. Evaluation Criteria for the Case Study

A list of 16 criteria was defined (Table 4), with two identified as eliminatory criteria: criterion
S9 (modelling approach) and criterion E6 (cost). If the modelling approach was CSTR (see Table 3)
on criterion S9, then the model was excluded from the evaluation process, since this approach fails
to reproduce the vertical thermal structure of the reservoirs, a relevant process for the present case
study. The criterion for exclusion, E6, was based on the model not being freeware or open source. This
exclusion factor was applied as long as there were enough open source or freeware models suitable for
the case study in the evaluation process.

Table 4. Set of criteria defined for each cluster used in the evaluation of the models. Criteria defined by
the technical team (T) and/or the end-users (E).

Clusters Criteria

Scope

S1: model outputs for chlorophyll (besides biomass) for a direct validation with field data T,E

S2: explicit simulation of different functional groups of primary producers, including cyanobacteria T,E

S3: inclusion of iron, given its role in the quality of water for human consumption E

S4: simulation of pH, for its relevance on fresh water chemical reactions T,E

S5: O, N and P cycles T

S6: carbon dynamics T

S7: sediment-water fluxes, with detailed parameterization of processes occurring in the sediment T,E

S8: adequate spatial description and hydrodynamics processes to simulate thermal stratification and
related water movement T

S9: modelling approach T

Record
R1: number of publications T

R2: model dissemination (local vs. global applications) T,E

R3: type of water systems (higher to lower score: reservoirs, rivers, estuaries/coastal lagoons) T

Experience

E1: quality of the Graphical User Interface E

E2: availability and quality of support manuals E

E3: examples of running applications T,E

E4: user forums E

E5: technical support by the developing team E

E6: costs E

5.3. Valuation of Criteria for the Case Study

Three models were excluded from the evaluation process based on the eliminatory criteria. These
were MYKE HYDRO River (criterion E6), SIMCAT (criterion S9) and TOMCAT (criterion S9).

For the remaining models (CE-QUAL-W2, MOHIDw, SisBaHIA, QUAL2KW and WASP7) the
results for each cluster are shown in Figure 4 and the values for the ranking of models for each criterion
are presented in Table 5. The results show that CE-QUAL-W2 had higher values for all clusters, with a
clear gap to the remaining models. The WASP model showed the second-highest mark for all clusters,
followed by MOHIDw and SisBaHIA in Scope, MOHIDw in Record and QUAL2Kw in Experience.
A brief analysis is presented in the next sections for each cluster.
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Table 5. ScoRE impact matrix. The scale represents the number of models under evaluation and,
consequently, ranges from 1 (inferior) to 5 (better). Overall results for Scope, Record, and Experience
are calculated according to Equation (1).

Criteria/Item CE-QUAL-W2 MOHIDw QUAL2Kw SisBaHIA WASP

S1: chlorophyll 5 3 3 3 4
S2: cyanobacteria 5 3 3 3 4

S3: iron 5 4 4 4 4
S4: pH 5 3 3 4 3

S5: O, N and P cycles 5 3 4 3 4
S6: carbon dynamics 5 3 4 3 3

S7: sediment-water fluxes 5 3 1 2 4
S8: hydrodynamic processes 4 5 2 5 3

Scope 4.9 3.4 3.0 3.4 3.6
R1: publications 5 4 2 1 3

R2: model dissemination 5 3 2 1 4
R3: type of water systems 5 2 3 2 4

Record 5.0 3.0 2.3 1.3 3.7
E1: GUI 4 1 2 5 3

E2: support manuals 5 2 4 3 5
E3: examples 5 4 5 4 5

E4: user forums 5 4 3 1 2
E5: technical support 4 2 1 5 3

Experience 4.6 2.6 3.0 3.6 3.6

5.3.1. Evaluation of Model Scope

Considering the criteria in model Scope, CE-QUAL-W2 had the highest score, denoting a better
capacity to address all the characteristics of the studied systems under consideration. The WASP model
followed in the ranking for Scope, since it also addresses most of the items. Like CE-QUAL-W2, the
WASP model was developed for fresh water systems, having a detailed parameterization of chemical
reaction characteristics of such water bodies, including sediment processes and water-sediment mass
fluxes. MOHIDw and SisBaHIA both have an advantage with their 3D setup, allowing a more realistic
simulation of hydrodynamic processes in larger reservoirs. WASP7 also enables the user to work on
3D systems, when coupled with a 3D hydrodynamic model. CE-QUAL-W2, on the other hand, only
allows for a 2D setting, relying on the assumption that this approach is suited for most reservoirs.
However, MOHIDw and SisBaHIA miss some relevant processes/constituents in fresh water systems.

5.3.2. Evaluation of Model Record

Models were searched for hits in ScienceDirect (SD), in both the combination of ‘Title, abstract and
keywords’, and ‘all fields’, and Web of Knowledge (Wok), for both ‘Title’ and ‘Topic’. The results are
depicted in Figure 5. According to both portals, CE-QUAL-W2 stands as the model with the highest
number of hits, except for ‘Title’ in SD where MOHIDw had the highest score. SisBaHIA was the
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model with fewer hits on both SD and WoK. Browsing available studies of each model reveals that
CE-QUAL-W2 is the most disseminated model, having numerous applications worldwide, followed
by WASP and MOHIDw models also with a global reach, but with lesser applications, and finally by
SisBaHIA, almost confined to Brazil. CE-QUAL-W2 also ranks higher in the type of water systems,
since it has been purposely developed for rivers and reservoirs, unlike other models that were mostly
developed for coastal and transitional waters (e.g., MOHIDw and SisBaHIA).Water 2018, 10, x FOR PEER REVIEW  16 of 24 
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5.3.3. Evaluation of Model Experience

All models provide a GUI interface, support material and running examples, and have user
forums where users and developers can post comments and exchange information. These, however,
vary in sophistication and completeness between models. CE-QUAL-W2 is the model that offers the
more comprehensive user manual, detailed examples of running applications and a dedicated user
forum. MOHIDw, for example, is a community model in continuous development by a number of
users worldwide and, although a highly complex and comprehensive modeling platform, the support
documents are dispersed over several sources and not centralized and updated in the form of a user
manual. SisBaHIA has the most intuitive native GUI, followed by CE-QUAL-W2 with a software
developed by the community of users. All other models have a suitable GUI, and MOHIDw even
provides the use of an advanced GUI, in the form of the commercially licensed software MOHID
Studio (Action Modulers: Mafra, Portugal). This software integrates model simulations with the
management of field data, among many other modeling support tools. Likewise, CE-QUAL-W2 also
has the option of using a GUI with additional options when compared to the native version. SisBaHIA
is the only model that offers technical support in the form of a service, the terms of which are decided
on a case-by-case basis. Other models offer interspersed support in the form of help to users provided
by authors (e.g., CE-QUAL-W2), the institution responsible for the model (e.g., WASP7) or the team of
developers (e.g., MOHIDw).

5.4. Model Ranks

Model ranks were obtained using Equation (2), and by assigning the relative weight of 50% to
Scope (WS), 25% to Record (WR) and 25% to Experience (WE), according to the end-users.

The ScoRE ranking, determined according to Equation (2) with the calculated values for each
cluster (Table 5), showed that CE-QUAL-W2 was the most suited model (ScoRE = 4.8), followed by
WASP (ScoRE = 3.6), MOHIDw (ScoRE = 3.1), SisBaHIA (ScoRE = 2.9) and QUAL2Kw (ScoRE = 2.8).
In fact, not only did CE-QUAL-W2 perform better overall, it performed better in terms of the three
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clusters, being the best model in terms of Scope, Record and Experience for this particular case study.
The results are graphically illustrated in Figure 6.Water 2018, 10, x FOR PEER REVIEW  17 of 24 

 

 
Figure 6. The ScoRE results for the evaluated models. Scope, Record and Experience values are 
calculated in Table 5. ScoRE was determined using Equation (2), with the following relative weights: 
WS = 50%, WR = 25% and WE = 25%. 

6. Discussion 

6.1. Criteria Defined in ScoRE 

The ScoRE approach starts with only three broad clusters of criteria and a blank list of criteria. 
Consequently, it imposes less framing regarding criteria definition than other methods found in the 
literature [18–20]. Reducing framing means the list is more flexible and allows new criteria to emerge, 
but it can also mean relevant criteria might not be identified and used in the analysis. This is the 
reason why authors propose the involvement of both the technical team and end-users in the criteria 
definition process; while the technical team has a better understanding of the processes being 
modelled, end-users have a better grasp of the relevant social, political, institutional and economic 
context and constraints. However, in the present case, end-users have only defined financial criteria.  

A total of 18 criteria were defined. This is a higher number than other studies, which presented 
on average of 10 criteria [18,19,21,22], with the exception of Grimsrud et al. [20] which offered a total 
of 24 criteria (Table 6). From Table 4, we can see that half of the criteria were generated from the 
technical team and half generated from the end-users. Both defined six of the criteria. The criteria 
outlined by end-users were mostly related with the Experience cluster. This shows that both model 
users and modelers can contribute meaningfully to the definition of criteria.  

The criteria defined in the case study are within the range of criteria found in the literature. 
Despite the freedom in criteria definition for ScoRE, novel criteria did not emerge from this particular 
case study. In this sense, ScoRE lead to similar results to those expected if other methods were used 
for criteria definition. From the literature analyzed, ScoRE was the only approach where the list of 
criteria is empty at the beginning of the process and where both modelers and end-user define the 
criteria for the evaluation process. The results obtained show that model users can define criteria for 
the evaluation, complemented with additional criteria suggested by the modelers. This means that 
criteria definition can be opened up for discussion between modelers and end users, in addition to 
the valuation stage. 

The range of criteria defined for this particular case did not include, for example, criteria linked 
with the accuracy of the data and model, if the models include uncertainty or sensitivity analyses to 
the results, or even on the availability of data [18,20,25]. Such criteria, however, should be part of the 
criteria list in further studies, given their implications on the use of the model and validity of its 
results. 

Table 6. Number of criteria identified in ScoRE and in other approaches (approximate numbers). 

Figure 6. The ScoRE results for the evaluated models. Scope, Record and Experience values are
calculated in Table 5. ScoRE was determined using Equation (2), with the following relative weights:
WS = 50%, WR = 25% and WE = 25%.

6. Discussion

6.1. Criteria Defined in ScoRE

The ScoRE approach starts with only three broad clusters of criteria and a blank list of criteria.
Consequently, it imposes less framing regarding criteria definition than other methods found in the
literature [18–20]. Reducing framing means the list is more flexible and allows new criteria to emerge,
but it can also mean relevant criteria might not be identified and used in the analysis. This is the
reason why authors propose the involvement of both the technical team and end-users in the criteria
definition process; while the technical team has a better understanding of the processes being modelled,
end-users have a better grasp of the relevant social, political, institutional and economic context and
constraints. However, in the present case, end-users have only defined financial criteria.

A total of 18 criteria were defined. This is a higher number than other studies, which presented on
average of 10 criteria [18,19,21,22], with the exception of Grimsrud et al. [20] which offered a total of
24 criteria (Table 6). From Table 4, we can see that half of the criteria were generated from the technical
team and half generated from the end-users. Both defined six of the criteria. The criteria outlined
by end-users were mostly related with the Experience cluster. This shows that both model users and
modelers can contribute meaningfully to the definition of criteria.

Table 6. Number of criteria identified in ScoRE and in other approaches (approximate numbers).

Number of Criteria
Related with Saloranta et al. [18] Boorman et al. [19] Grimsrud et al. [20] Chinyama et al. [21] Tuo et al. [22] ScoRE

Scope 5 8 13 5+(a) 3 9
Record 1 1 0 0 0 3

Experience 8 3 11 4 1 6
Total 14 12 24 9+ 4 18

(a) the guiding questions proposed can give origin to more than five criteria.

The criteria defined in the case study are within the range of criteria found in the literature.
Despite the freedom in criteria definition for ScoRE, novel criteria did not emerge from this particular
case study. In this sense, ScoRE lead to similar results to those expected if other methods were used
for criteria definition. From the literature analyzed, ScoRE was the only approach where the list of
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criteria is empty at the beginning of the process and where both modelers and end-user define the
criteria for the evaluation process. The results obtained show that model users can define criteria for
the evaluation, complemented with additional criteria suggested by the modelers. This means that
criteria definition can be opened up for discussion between modelers and end users, in addition to the
valuation stage.

The range of criteria defined for this particular case did not include, for example, criteria linked
with the accuracy of the data and model, if the models include uncertainty or sensitivity analyses to
the results, or even on the availability of data [18,20,25]. Such criteria, however, should be part of the
criteria list in further studies, given their implications on the use of the model and validity of its results.

6.2. Valuation of Criteria in ScoRE

In ScoRE, the technical team performs the valuation of criteria, not the end-users. The particularity
of ScoRE is that values for models in the criteria are discussed with the end-users, in particular, those
referring to criteria within the cluster “Experience”. The advantages of having the technical team
performing the scoring are that the end-users might not process all the knowledge necessary to
adequately evaluate the models under the criteria [19], in particular, the criteria falling under the
cluster “Scope”.

The disadvantages of such an approach are that the process can become less transparent (and less
accountable), costlier (due to the costs of hiring a technical team) and lengthier [18,20–22]. The fact
that ScoRE allows the discussion of the scorings with the end-users helps to restore transparency in the
model selection process. Furthermore, for this particular project, the decision to use a technical team to
model water quality has been made before the decision of whether to involve the technical team on
model selection. Therefore, in this particular case, asking the technical team to select the appropriate
model for the case study was just an additional small cost to the overall budget.

Another particularity of ScoRE was the use of eliminatory criteria that had two values linked with
acceptable and not acceptable scores. Being scored unacceptable in any of these eliminatory criteria
meant the elimination of the model from the process. In this case study, two eliminatory criteria were
defined which resulted in the elimination of three models from the evaluation. In this regard, the main
difference between ScoRE and Tuo et al. [22] is that, for the remaining models, ScoRE presents clear
guidance for weight definition.

6.3. The ScoRE Aggregation Procedure

The results show that CE-QUAL-W2 performed better than the remaining four models analyzed
(Figure 6). It is important to stress that results are specific for this particular case study, as the choice of
criteria and the weights attributed to the clusters can vary from application to application, resulting in
different rankings. The outcome of this method reflects the importance that the technical team and the
end-users assign to different criteria. Even for a reservoir, for example, SisBaHIA or MOHIDw could
have a higher ScoRE than other models, if the focus of the study relied heavily on hydrodynamics,
since both achieved better spatial simulation of transport processes [38,75]. Likewise, if an integrated
watershed–river–reservoir modelling approach was favored, MOHIDw would be a better option,
reaching a higher ScoRE, as it can be coupled with MOHID Land, which describes the transport of
water in the watershed [57,76].

In this case study, end-users attributed higher weight to the cluster “Scope,” and equal weights
to the clusters “Record” and “Experience” (Section 5.4). These results are not surprising and in
line with other works on model selection, in which most of the criteria are related with the cluster
“Scope” [19–21,25,77], as shown in Table 6. The only literature case analyzed that provided a higher
number of criteria to another category rather than “Scope” was Saloranta et al. [18], which defined five
criteria for scope, but eight for Experience (and one for record).

Although the clusters Record and Experience had equal weights (25% each, Section 5.4), the
cluster Experience scores were higher or similar to the scores from the cluster Record (Figure 6), with a
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small exception for the model CE-QUAL-W2, where Record value was 0.1 points higher than the value
for Experience. Interestingly, the literature shows more criteria related to the cluster Experience, than
with the cluster Record [18–20,25,77]. Therefore, results obtained here seem to agree with the observed
patterns in the literature concerning criteria relevance (Table 6).

The aggregation procedure used in ScoRE to obtain ranking is a procedure which includes a
mixture of approaches: from eliminatory criteria [18–21], averaging scores of criteria (within the same
cluster), and consulting with end-users to define weights to the clusters which are then added using a
linear additive model (a compensatory aggregation procedure).

The proposed approach requires communication between modelers and end-users, thus
promoting the pivotal exchange of information [78]. This, in turn, leads to rational reflection, and
potentially, some learning from both sides. Additionally, by making use of a linear additive model
for aggregating results, the outcome is more straightforward to understand by end-users, improving
the transparency of the method. However, the linear additive procedure is a compensatory method
in which weights are recognized as trade-offs. This is an essential issue for sustainability, as certain
voices and some ecosystem services should not be traded off [23,79,80]. For models, it can mean that a
combination of a high score in the interface with a low score regarding a specific relevant modeled
parameter, can exceed a higher score in the referred parameter combined with a lower score on the
interface. By using the eliminatory criteria, ScoRE allows reducing some of this compensatory nature,
being a partially compensatory approach. However, criteria within each cluster are still averaged. By
doing so, one is assuming that all criteria not classified as an eliminatory criterion within the same
cluster are equally relevant, which might not always be the case.

In this case study, as in all the approaches reviewed in this paper, end-users are clearly defined
and limited in the number of individuals, and it’s not infrequent to have only one decision-maker.
Under more complex decisions, with more decision-makers, a discussion on whether weights should
or not be used needs to take place to avoid social traps, ensure all relevant voices are included, and
ensure that value disparities and conflicts are recognized and managed correctly [16].

6.4. A Word on Robustness, Sensitivy and Transparency of the Process and Results Obtained

Finally, results from ScoRE are discussed with the end-user who can go through the whole process
and change it. This way, results are exposed to validation by the end user. Furthermore, ScoRE starts
with a clean sheet regarding the criteria to be used for the evaluation (and the relative importance
of each criterion—the weights), which allows different end-users (and modelers) to participate in
the identification of which criteria to include in the evaluation, potentially accommodating different
perspectives in the process. The two factors mentioned help ScoRE to reduce ambiguity in its results
and to be seen as potentially more robust than other approaches. This step also entails a sensitivity
analysis in which some of the assumptions or parameters included in the model are given a different
value, to test whether the final ranking of alternatives changes. This methodology is more in line with
the post-normal approach to science (with the use of a peer-review community [81]). It is also in line
with other approaches dealing with uncertainty (e.g., Stirling [82]), where the focus is not on accepting
scientific inputs uncritically, i.e., without articulating the degree of risk associated with the results or
the values that inevitably enter in the presence of uncertainty.

7. Conclusions

For many years, decision-makers have managed water quality in rivers and reservoirs empirically,
relying to some extent on scientific tools and input, but frequently based on political motivations.
The need for sound decisions, however, has pushed the development of numerical models to address
specific environmental and socioeconomic setting. Eventually, this effort resulted in the myriad models
that are now available, raising the problem of their choice by users. A model will hardly possess all
the required functionalities for a specific application and, consequently, the choice of a model depends
upon many conditions and requirements.
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Given the significant number of available modeling tools for such tasks, water managers wanting
to use numerical tools must, at some point, choose among the myriad options, frequently without
any specific criteria or methodology. The debate on how to select water quality models is relatively
recent, and only a few approaches to model choice have been proposed. While not being a method to
compare models in their essence, ScoRE may be useful for that purpose.

The main advantages of ScoRE are:

• Criteria to compare models are defined in a dialog between the modelers and end-users.
Introducing both perspectives into criteria definition can lead to a more comprehensive list.

• ScoRE is a transparent method, as end-users are invited to go through the whole process and to
discuss final results with the technical team.

• The guidance on how to select a model when models are not excluded by eliminatory criteria (in
contrast with most of the literature found, with some exceptions [22]).

• The final discussion of results with end users, allowing for the refinement of results, and producing
a more robust outcome.

ScoRE is not free from limitations, nonetheless. In ScoRE, end-users have little say in the scoring
stage, making the process more resource-consuming (concerning time and costs), as a technical team is
required for the scoring stage. ScoRE’s weighting procedure is still a complex procedure involving
averaging scores within clusters and attributing weights to clusters. This could be further simplified.
Finally, more emphasis can be put into eliminatory criteria (higher number of criteria classified as
eliminatory). These will be the target of improvement in further stages of this research.
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